‘

Apple Il Monitors Peeled

Apple Il

AARANAAANAMAANMAANA M AR DM M

""""" - & - D O DI B S N [E——

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER EXPRESS O UL,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCH TR
IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTARILITY, (0t 1'1THEN
FOR ANY PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE 15 SoLh O
LICENSED "AS IS". THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE 10
WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWIHG HIETI
PURCHASE, THE BUYER (AND NOT APPLE COMPUTER INC., ITS DISTRIGBITOR, ol
ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL MECESSARY SERVICING,
REPAIR, OR CORRECTION AMD ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, 11
NO EVENT WILL APPLE COMPUTER INC. RE LIABLE FOR DIRECT, TMHOIRECT,

[NCIDENTAL, OR CONSEQUENTIAT DAMAGES RESULTING FROM ANY DEFRECT 1M THI
SOFTWARE, EVEN IF APPLE COMPUTER INC. MAS BEEN ADVISED OF 1p
POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW 'THE FXCLISTON O

LIMITATION OF IMPLIED WARRANTIES OR LIARILITY FOR INCIDEMHTAL O
CONSEQUENTTAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSTON MAY NOT

APPLY TO Y.

This manual is copyrighted and contains proprietary informatfon. All
rights are reserved. This document may not, in whole or part, he
copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without
writing,

prior conuent, In
from Apple Computer Inc.

©1981 by APPLE COMPUTER INC.
1326 Bandley Drive

Cupertino, California 95@14
(408) 996-101¢

The word APPLE and the Apple logo are repgistercd trademarks ol
APPLE COMPUTER INC.

APPLE Product #D2L00O13
950-0018

Printed in USA

redaTTrTTTTAMMMPTETTTREYTRAETTAOREAN

:

W OW Wl Wwww Wl e W W

Apple ll

pIe]I Monit Pele

TABLE OF CONTENTS
PREFACE

INTRODUCTION

OVERVIEW

CHAPTER 1

MEMORY ALLOCATION

Ll B o

13
13
13
14
14
15
16

Monitor Usage Memory Map
RAM Memory Allocation by Address
Page 7ero
Page Zero Fields
Pages One through Three
Page One ($@14¢ - @LIFF)
Pape Two ($@20¢ - @2FF)
Page Three (S@30@ - (3FT)
Page Three Address Table
Pages Four through Seven & Eleven
Screen Memory Address Table
Peripheral Controller Work Areas

MONITORS PEELED

Vil

vil

Vil

s TTTTTTTTITITTETOTATTAEAOTEAETTTAON

" EE R E R R E R R R R "

CHAPTER 2

INPUT AND OUTPUT

17

17 Keyboard Input Division of Labor

14 Table of Routines

21 Calls to Keyboard Input Routines

21 Table of Keyboard Input Calls

24 KEYIN Routine Replacement

25 HKeyboard Input Monitor Routine

26 Address Table 1 - Character Input
27 Address Table 2 - Line Input

28 Overview — Text Output to the Screen
29 Output within the Scroll Window
3 Page Zero Fields

19 Seroll Window Output Routines

34 Screen Format Control by Routine
15 Screen Format Control by Poke/Store
I Scroll Window Data Manipulations

16 Address Table

18 Cursor Position Control

19 Address Table

41 General Text to the Screen
A1 Address Table

473 Control Characters

43 (utput without the Scroll Window
Hh5 Address Table

ixs! Applesoft Sample Program

47 Secondary Display Areas

47 Copy Primary to Secondary

48 Set BASL,H for Secondary Display Page
48 Address Table

49 Direct Control Addresses

S Integer BASIC Sample Progranm

Hif Applesoft Sample Program

TABLE OF CONTENTS

ii

CHAPTER 3

INTERRUPT PROCESSING

53 Interrupt Processing

54 NMI Interrupt

54 RESET Interrupt Support

55 IR(O/BRK Interrupt Handling

55 RESET Interrupt = 01d Monitor

56 Address Table

56 RESET Interrupt — Autostart Monitor

57 Initialize System Configuration
57 Cold/Warm Determination

58 Power—0On Initialization

58 System Restart

58 RESET Vector Modification by User
59 Address Table
61 TIRG/BRK Interrupts

61 IRQ/BRK Interrupt Recognition

61 IRQ Interrupt Handling

61 BRK Instruction Interrupt

62 BRK Instruction ~ Saving of Status
62 BRK Instruction ~ 0ld Monitor

62 BRK Instruction ~ Autostart Moniter

63 Address Table

iv. MONITORS PEELED

53

TreTTAMTTOTOTTEAEAATOATTOAOTAETTAAAD

T™~RT

CHAPTER 4
MISCELLANY

65

65
65
67
68
68
69
69
69
7
%
p
0
i
71
72
73
73
73
74
75
76
76
77
77
80
84
81
81
82
B2
82
83
813
83
83
B4
B4
B4
B5
85
R
86
R7
88
88
88
88

Machine Language Development Aids
Address Table
LORES Plotting
Page Zero Fields
Address Table
Data Manipulation Functions
Routines
Memory to Memotry Move
Jump to Address with Registers Loaded
Increment Address Fields
Save 652 Registers
Restore 65@2 Registers
Multiply Two Byte Fields
Multiply Routine
Divide Four Byte Dividend by Two Byte Divisor
Estahlish a RESET Vector
Convert Hex Characters to Value for Use
Disassemble an TInstruction
Address Table
Applesoft Sample Data Manipulation Program
Monitor Command Processor
Entering the Monitor Command Processor
Calling the Monitor Command Processor
Address Table
Applesoft Sample Program
Speaker use through the Monitor
Address Table
Cassette Tape Input and Output
WRITE
READ
Cassette Input/Output Internal Routines
HEADR
RD2BIT
RDBIT
RDBYTE
WRBIT
WRBYTE
Paddles, Buttons and Annunciator I/0
Came 1/0 Hardware Address Table
WAIT Routine
WAIT Routine Delay Times
Use of Control-Y with Parameters
Paddle Interference — Sample Program
Registers for BASIC Monitor Calls
Decimal to Hex Conversion
Applesoft Sample Program
Step and Trace Peculiarities

TABLE OF CONTENTS

vi

MONITCRS PEELED

rTr*Tr r-r - - - - " rTTmTTHTTTTTTTMT
"N EEEEEEREEEEEEE R E R EE R "

s s §

"

-

PREFACE

The Apple IT Reference Manual contains a complete assembly listing of
the Monitor program in the Apple TI. The Apple II Monitors Peeled
Manual (this book) contains descriptions of the varfous routines in
the Monitor and address tables arranged by topic instead of in the
dequence of location within the machine. The material you find here
lins heen chosen and organized to allow programmers of the Apple IT to
make convenient use of routines in the Monitor from their programs.

Many of the CALLable points in the Monitor fall under more than one
topic. The layout of this book is intended to minimize the
necessity of page flipping and cross referencing, so those points
which seem to be appropriately described under more than one teopic
will be found in each applicable table.

This document covers the Apple II Monitor (both the 0ld Monitor and
the Autostart Monitor versions), ROM address range S$F8@@-SFFFF. This
publication does not cover BASIC, APPLESOFT, D0OS, HIRES, SWEET16, or
I"'loating Point Arithmetic utility routines.

INTRODUCTION

There are two Monitor ROM’s available for the Apple II. The two
Monitors are identical for most functions. They differ only in certain
features. This book describes both Monitors, with indications provided
whenever the information applies to only one of the two.

Some thousands of Apple I1 computers have been shipped with the

carlier wersion of the Monitor. In this book, that will be referred

to as the 01d Monitor. In 1979, a new version of the Apple II Monitor
wns developed. This Monitor contains new features to facilitate system
start-up and program editing, at the expense of removing the
instruction trace and single step facilities and sixteen bit multiply-
divide routine of the 0ld Monitor. This new Monitor is called the
Autostart Monitor in this book. The Autostart Monitor is available
from Apple Computer Inc. and from many computer dealers under the

name Autostart ROM, Apple Part No. AZME@27.

It 1s easy to determine which Monitor is in a machine. If the machine
comes up with the APPLE 1II lepend at the top of the screen when the
power is turned on, the machine contains the Autostart Monitor. If the
machine comes up with the Monitor prompt (*) then it contains the 01d
Monitor.

A program can also determine whether the Monitor is the 0ld or the

Autostart ROM. The byte at $FAFF (64255 or -128l) contains $f# in the
Autostart and $@1 in the 0ld Monitor.

PREFACE vii

OVERVIEW

CHAPTER 1

MONITOR USACE MEMORY MAP

PAGE

Use of memory by the Monitor and by the Apple II for machine
control and display to the screen.

ZERO
Description in detail of all memory locations in papge zero uscd
by the Monitor, indicating legal range of wvalues and all routlinen

which use the location.

PAGES ONE THROUGH THREE

PAGES FOUR

PERIPHERAL

General descriptions of pages one and two and specific
description of fields in page three.

THROUGH SEVEN AND ELEVEN
Description of how text is maintained in "screen refresh memory"

for display on the screen, both primary and secondary display
areas for text and Low Resolution (Color) graphics.

CONTROLLER WORK AREAS
A chart showing the scratchpad areas available in RAM memory for
use by peripheral controller programs.

CHAPTER 2

KEYBOARD INPUT DIVISION OF LABOR

Descriptions of the lower level routines used by the Monitor to

read data from the keyboard, including subroutines for cursor
movement without reading characters.

USER CALLS TO KEYBOARD INPUT ROUTINES

Specifications for user calling of the routines at all levels for
input of characters from the keyboard and for user program
simulating (replacing) the keyboard as the input device.

KEYBOARD INPUT MONITOR ROUTINE

Table 1 contains addresses for character by character input from
the keyboard via the routines described in the previous section.
Table 2 contains addresses for line input from the keyboard.

OVERVIEW - TEXT OUTPUT TO THE SCREEN

TEXT

viii

Because there are so many ways to write text to the screen, this
section contains an overview of the following pages on screen output.

OUTPUT WITHIN THE SCROLL WINDOW

Detailed description of the normal method of printing data to the
screen, as used by PRINT of BASIC, including page zero reference
table for Seroll Window services.

MONITORS PEELED

rrTTTTTYTYTTOTYTYAYRARARATYRAANTY
WOl OB OW R W W W W W Wl E R e el W

SCREEN FORMAT CONTROL BY ROUTINE
Table of addresses of routines in the Monitor which control the
format of the Scroll Window and the format of data display.

SCREEN FORMAT CONTROL BY POKE/STORE

Description of methods of controlling the screen display format
without calling routines in the Monitor.

SCROLI. WINDOW DATA MANTPULATIONS
Table of routines which affect the data displaved in the Scroll
Window, such as clearing part of it or scrolling it.

CURSOR POSITION CONTROL

Description of facilities for moving the cursor relative to
current position or to an absolute location.

GENERAL TEXT TO THE SCREEN

Printing data to the screen whether some other device has been
established (via CSWL) or not, and printing some things by a call
to a Monitor routine which loads the A-reg and calls COUT {itself.
TEXT OUTPUT WITHOUT THE SCROLL WINDOW
Ways and means of handling the screen as a formatted display

device, with or without part of the screen being defined as a
Scroll Window.

SECONDARY DISPLAY ARFAS

Different methods of getting data into the secondary text display
area.

CHAPTER 3

OVERVIEW OF INTERRUPT PROCESSING
General and specific definition of interrupts and interrupt

processing with regard to computers in general and the Apple II
in particular.

RESET INTERRUPT - OLD MONITOR

Description of handling a RESET interrupt with address table
allowing user call to subsets.

RESET INTERRUPT = AUTOSTART MONITOR
Description of handling a RESET interrupt with address table

allowing user call to subsets. Description of Soft Entry Vector
setup and use,

IR(/BRK INTERRUPT HANDLING

Descriptions of handling these types of interrupts by both
Monitors, with Address Tables.

OVERVIEW ix

CHAPTER 4

MACHINE LANGUAGE DEVELOPMENT AIDS
Address table for routines in the Monitor which can be called 1o

provide debugging information either by moving the information to
some other place in memory or printing information through COIT.

LORES PLOTTING
Descriptions of the routines in the Monitor which support this
function, with a table of addresses for directly calling them.

DATA MANIPULATION FUNCTIONS
Description of the routines in the Monitor which move data trom
one place to another, or change the format, or operate on one
item with regard to another,

MONITOR COMMAND PROCESSOR
How to call the Monitor Command Processor, to have it execute
Monitor commands and return to caller or stay in Monitor mode.

SPEAKER (BELL) USE THROUGH THE MONITOR
No music here. This is a description of how to use the speaker as
a signaling device in the same manner as the error alarm or RESET
key alarm.

CASSETTE TAPE INPUT AND OUTPUT

Description of all the routines involved with reading or writing
of tape, with user call information specified for the hiph level

routines. Includes list of calling programs for each point.

PADDLES, BUTTONS, AND ANNUNCIATOR I/0
Description of paddle reading for the machine language programmer
and addresses to use for all these devices.

WAIT ROUTINE
This routine will take control of the machine for a lensth of
time depending upon the input A-reg value. Table and formula are
provided for use where interval between events is eritical.

USE OF CONTROL-Y WITH PARAMETERS
Sample machine language program for rapid reading of the
paddles.

REGISTERS FOR BASIC MONITOR CALLS
The Monitor GO command routine makes it possible to call from
BASIC most Monitor routines which receive input in registers.

DECIMAL TO HEX CONVERSION
A sample program that shows how to convert from decimal to
hexadecimal.

STEP AND TRACE PECULIARITIES
Differences hetween operation of the machine with and without
Single Step in the 01d Monitor.

x MONITORS PEELED

TrTrrrT7*rT7TTTTTYTTOAEYTRANY AR

T
TR EEREE R R EE R E R R R T E R E

T

CHAPTER 1

MEMORY ALLOCATION

MONITOR USAGE MEMORY MAP

Memory is divided into 256 byte sections, generally referred to as
"pages". As with most countable items in computers, memory pages are
numbered from zero. Page zero is very special in that the full
address of a byte in page zero may be expressed in a single byte.
Hany 65@2 processor instructions are only two bytes in length because
the operand is in page zero. Thus, Monitor usage of page zero
recelves heavy treatment in the following section.

Page one (address range SP1P-SPIFF) is also special in the Apple II.
This entire 256 byte area is called the "stack”. The stack is a
temporary storage area for which special instructions are provided in
the 65¢2, The contents of the A-register or P-register may be pushed
onto the stack, which means the contents of the indicated register
are stored in the stack at the location currently specified by the
S-reglster: then the S-register is decremented. Data may be pulled or
popped from the stack, which means that the S-register is
incremented, and then the byte pointed at by the S-register is picked
up into the appropriate register. A JSR instruction causes the
current contents of the Program Counter to be pushed onto the stack
hefore the jump. An RTS instruction pulls two bytes from the stack
into the Program Counter.

The Monitor contains instructions which use the stack. However, the
Monitor does not initialize the stack pointer register to a preset

value or load the S-rep at any time.

Papge two {address range $@2@¢-502FF) is defined in the Apple II as the
keyhoard input area. The Monitor routines which support reading of
the keyhoard store the information into page two for use by the
calling program after the next carriage return is detected.

'ape three is address range $W3Q¢-S@3FF. Most of this area is unused
by the Monitor. Quite often the first 2¥) or so bytes are used for
machine language programs called by APPLESOFT or BASIC propgrams. The
Honitor uses only the last 16 bytes, as described in the Page Three
Address Table. (Note, however, that DOS uses the 32 hytes before the
Monitor’s 16.)

Pages four throupgh seven comprise the primary text or color graphics
display area. Pages eight thru eleven comprise the secondary text or
color praphics display area when that feature of the Apple II is
used. However, page eight is senerally the first page of the user

In the address table, pages four thru seven and eight through
cleven are described together when specifying memory address per
sereen line.

Arecia.

MEMORY ALLOCATION 1

From address S$@8@¢ to the end of memory in the machine is the user
area for programs and data. However, if ligh Resolution Graphics is
in use, then memory area from $2@#¢ through $3FFF is the primary
display area for that function and $4@@¥@ through $5FFF may be used as
the secondary display area for that function.

RAM MEMORY ALLOCATION BY ADDRESS

¢P@@ |Page zero

QPFF

#1003 |Stack
BIFF

#20¢ 1¥eyboard Input
fA2FF

#33@ |Available
#3CcF |

@3n@ 1nas

A3EF

#3FP |Vectors
@#3FF |

#4¢d |Primary Text
@7FF |and LORES Area

@#8¢y |User Program
land Data space
@BFF |to RAM size.
|
|ROM APPLESOFT
|USER PROCEAM
2909 |
| INTEGER
2FFF | BASIC DATA
|

Secondary Text RAM APPLESOFT
and LORES COMPTILER/
INTERPRETER

Primary HIRES

IFFF | RAM APPLESOFT
| USER PROCRAM
4009 | Secondary HIRES
|
S5FFT |
|
|

3FFF —end 16K machine
|
7FFF —end 32K machine

|
BFFF —end 48K machine

2 MONITORS PEELED

TTT™TTTTNRMPRTTRETYTARPREYTDR

W s s e e e WYl Wl W

TATTTTTTTT

PAGE ZERO

The Monitor makes use of the pape zero locations from 32 ($2¢) through
73 (549) for general functions and normal operations. Locations 74-77
($4A=4D) are not touched by the Monitor. Locations 78-79 ($4F-4F) are
modified as described below to provide a random number starting point
for an application program.

[n addition, the 0ld Monitor uses locatfons 8@-85 ($5(-55) for the 16
bit Multiply and Divide routines (which are available for problem
program use but are not used by any other part of the Monitor). These
locations are not used by the Autostart Monitor.

The Autostart Monitor uses locations @ and 1 during system
initialization. This initialization is described in the section on
"RESET Interrupt — Autostart Monitor" and below in describing the use
of locations @ and 1.

PAGE ZERO FIELDS

Dec Hex Monitor

Addr Addr Label Description

it} s Locy
Pl S LOC1

These locations are used by the Autostart Monitor
during the automatic Disk Bootstrap function which
takes place when the computer is powered up. Using
these locations for indirect addressing, the slot
addresses are checked = from slot 7 down thru

slot 1 - to determine presence of a disk controller.
If one is found, a Jump Indirect via $@@-G1 is
executed to initiate the hootstrap operation.
WNDLFT Left column of the Scroll Window:

Range is § to 39 (527).

This field is used only in VTABZ which sets BASL,H
to the memory location corresponding to €V and
WNDLFT. The contents, when changed by user
program, become effective on the next scroll
operation, clear to end of page operation, or
carriage return output. CH contains cursor
horizontal position relative to (WHDLFT).

After changing the contents of WNDLFT, either CALL
VTAB or print a carriage return to the screen to
make it take effect.
% 521 WNDWDTH Width of the Scroll Window:
Range is 1 to 4@-(WNDLFT).
When a character is written through COUT to the
screen it is placed at (BASL),(CH), after which CH
i1s incremented. Then (CH) is compared with
(WNDWDTH) to determine whether the curser has
exceeded the right margin of the Scroll Window.

MEMORY ALLOCATION 3

Top line of the Scroll Window:
Range is ¢ to 22 (816) for full text screen.
Range is 2(1 to 22 (514 and $15) for mixed graphics

Valid wvalues for VIAB in Basics are 21, 22, 23.
This field is used during a scroll operation to
indicate the line on which the operation should

It is also the line on which the cursor is
placed on completion of a HOME operation (clear
the window, place cursor at top left).

Nominally, bottom line of Seroll Window:

Range {is (WNDTOP)4+1 to 24 ($18).

WHNDBTM contains the number of the first line below
Window. Contents of WNDRTM are tested
only on output of a carriage return (88D) or line
It is used by Clear to End of Page and
by Seroll routines.

Displacement from WNDLFT where next character to
the screen will be placed: Range is ¢ to

After the screen output routine
STOADY places a character into the screen area as
part of normal character output, CH is then
incremented and compared to WNIWDTH. If CH is not
less than WNDWDTH, a carriage return will he

Note that CH is used for echoing keyboard input to

the screen by the Monitor GRTLN etc. routines.

NDee Tex Monitor
Addr Addr Label Description
34 822 WNDTOP
and text.
start.
35 $23 WNDETM
the Scroll
feed (S58A).
36 §24 CH
(WNDWDTHY - 1.
simulated.
37 525 cv

4 MONITORS PEELED

Vertical screen position (line number) for next
character to he written to the screen: Range is (!
to 23 ($17). The content of CV is relative to the
top of the screen, not to the top of the Scroll
Window. It may be set hy loading the desired line
munher into A-reg and callineg TABV. Tt may be set
by POKFing the lime mumber inte €V and then
calling VITAB. Actual storape of a character into
the screen area includes use of BASL,H for line
mimher, not CV. The calls above to VTAR or TABV
are to set BASL,H from OV (and WNDLFT) for
imnediate future reference.

If CV ig at ar helow WNDBTM it will remaim on the
current screen line as carriage returns go by
while the contents of the tHindow will he
scrolled for each.

Seraoll

TATTTYTTTTTTN

T MTTT

TTTTTTT

T

e o —— — —— —

NN TR R

llec Hex Monitor
Addr Addr Label
1R 526 GBASL
19 527 GBASH
] 528 BASL

41 529 BASH

42 S2A BAS2L
43 528 BAS2H
i 520 H2

"

LMNFEL

RTNL

RMNEM

RTNH

Description

Memory address within the screen area of the left
end point of the desired line for LORES plot. This
field is set by the GRASCALC routine to the memory

location appropriate for the line number specified
in the A-reg. See MASK at $2F,

This two byte field is the memory address for the

left end character position of the current text line,
line, within the Scroll Window. The conteunts are a

funection of CV and WNDLFT.

This field is set by the BASCALC routine to point
to the memory address for the left end of the
screen line specified in the A-reg. This call to
BASCALC is usually accomplished by the VTAB
routine, which then adds (WNDLFT) to BASL,H to

point to the left end of the line within the
Seroll Window.

This two byte field is used as a work area only
during a scroll operation. It is the destination
line pointer used as each line is moved to the
position above current.

Right end point of horizental line being drawn by
the HLINE routine: Range is ¢ to 39 (s27).

This byte is set by the calling program before
HLINE is called.

Low byte of two byte pointer (LMNEM, RMNEM) used
by Disassembler as index to rmemoniecs table.

Save area used by the Instruction Trace routine
of the O1d Monitor.

Bottom point of a vertical line being drawn by
VLINE routine: Range is # to 39 ($27) for mixed
screen, # to 47 ($2F) for full screen graphics.
This byte must be set before VLINE is called.
that this byte is used when the Clear Screen
(CLRSCR) routine uses VLINE to clear the screen.

Hote

Used with LMNEM as table index for rmemonic table
by the Disassembler.

Used with RTNL as a save area by the Instruction
Trace routine of the 0ld Monitor.

MEMORY ALLOCATION 5

Description

Dec Hex Monitor
Addr Addr Label
46 $2E MASK
T " FORMAT
" " CHKSUM
47 $2F LASTIN
I " LENGTH
1 L SIGHN

6 MONITORS PEELED

With this label, this location is used as a $0F
or $F@ by PLOT depending on whether the point is
on the high side or the low side of the two
horizontal plot lines represented by the GBASL,H
pointer. Each location of the form (GBASL),Y
contains two points on the screen, one above the
other. MASK is used to set the appropriate one
while leaving the other unchanged.

Using this label, the Disassembler uses this byte
as temporary storage for the code which indicates
the format of the instruction for display
PUrpPOSES.

This byte is used during cassette tape read to
continually accumulate the checksum which will

be compared to that generated during the write
operation which created the record. This byte is

initialized to zero at the heginning of a tape
read. As each byte is stored into memory it is
Exclusively ORed against CHKSUM. After the last
byte has been stored, one more byte is read from
the tape and compared to CHKSUM. 1If equal, a good
read may be assumed. As this result is not finally
stored back into CHKSUM, that field cannot be used
by the calling program to determine success or
failure of the read. A method for this
determination will be found in the section
"Cassette Tape Input and Output™,

With this label, the RDBIT routine uses this byte
as a work area to determine whether the sense of
input from the cassette tape input register has
changed.

This field is set by the Disassembler to Iindicate
the length of the instruction. After output of the
disassembled instruction, PCADJ uses this value to
compute new values for PCL,H, which are returned

to caller in the A and Y reg for user storage to
PCL,H. Instruction trace in the 0ld Monitor also
uses this field to indicate the number of bytes to
move to the instruction trace execution work area

(XOT).

After a call to MULPM or DIVPM (signed 16 bit
multiply or divide in the 01d Monitor), the $@1
bit of this byte is set if the always—-positive
result is to be complemented by the calling
program.

TT

rTrrTrTrTrTenT

TTTTYTTTTYTTTT
B @ @ & @ @ @ W Wl oWl E N . N

TT T

TT

This byte contains the code for the color of
points to be placed on the screen in graphics

The SETCOL routine is entered with a value
in the low order four bits of the A-reg. This
value is then placed in both the high and low
COLOR is then used with MASK in
setting the value of the byte in the secreen area
to accomplish setting a particular point to the

Color can be set directly by stuffing the value
multiplied by $11 in color. For example,

color = orange (9): From assembly — LDA #99,
From BASIC - POKE 48, 9%17.

This byte is used by the Monitor command
processing routines to control parsing and to
control operations when a blank is encountered
after the hex digits. For example, a hex address
followed by a colon causes setting of MODE so that
during further processing of the input line each
blank encountered signifies end of a hex value to
be placed in memory. During parsing, the contents
of MODE indicate where the hex values should be
stored for use when the command itself is

MODE is set to appropriate values by
plus, minus, colon, and period.

This byte is a mask used by COUT1 to cause
characters written to the screen area to display
white on black (INVFLG=5FF) or black on white
{ITNVFLG=83F) or blinking (INVFLG=$7F). This field
is set to $FF when a RESET occurs by the routine
The routine called SETINV can he
called to set reverse video. The Monitor does not

Dec Hex Monitor
Addr Addr Label Description
48 $3¢¢ COLOR
mode.
nibbles of COLOR.
selected color.
5TA color.
49 531 MODE
encountered.
S¢ 532 INVFLG
at SETHNOR!M.
set blinking.
21 533 PEOHPT

This byte contains the prompt character which is
written to the screen by the Monitor GRTLM routine
in preparaticn for reading a line of characters
from the keyboard. When the RFESET key is pressed,
the 01ld Monitor quickly enters the MON routine, at
which point the PROMPT field is set to SAA, "&",
The Autostart Monitor also sets the '"*" prompt
character at the MON routine, but this is not

necessarily a part of processing the RESET
interrupt.

MEMORY ALLOCATION 7

Moniter
Label

Dec Hex
Addr Addr

Description

52 $34 YSAV

53 835 YSAVIL

CSWL
CsWH

54 $36
55 $37

56 538
57§39

KSWL
KSWH

58 $3A
59 $3B

PCL
PCH

8 MONITORS PEELED

This byte is a save area used by the Monitor
Command Processor. The Y-reg is used by the
Command Processor in indexing through the input
line. When a command has been decoded, the Y-reg is
saved at YSAV before going to the selected service
routine. On return to the Command Processor, the
Y-reg is reloaded from here before transfer of
control to NXTITM to continue scanning the input
line.

This byte is a save area for the Y-reg across a
call to the screen output routines. Y-reg is saved
and restored in the COUT] routine.

This two byte field contains the address of the
routine which is to receive and dispose of output
characters. When the RESET key is pressed this
field is initialized to point to COUT! to send
output characters to the screen. Entering a
Monitor Command nPe (n=port number, Pc=control-P)
will cause the Monitor to set CSWL to @, CSWH to
Cn. The routine at that location will then receive

(in the A-reg) each byte '"written" through COUT,
which is a JMP (CSWL).

If the Monitor Command "@Pc" is executed, CSWL,H
is set to point to COUT1 instead of to CH@@.
This two byte field contains the address of the
user input routine. It is set by RESET key
processing to point to KEYIN which gets its
from the keyboard. The Monitor Command nKe (n=port
number, Ke=control-K} causes the setting of KSWL
to @#, KSWH to Cn. This routine is then called any
time the Monitor or executing program asks for
another byte of input by calling RDKEY or one of
the routines which in turn calls RDKEY.

input

The Monitor Command "@Kc¢" results in setting
KSWL,H to point to KEYIN instead of to CPUd.

This field is a save and contrel area for the
Program Counter. In addition to the Mini Assembler

to keep track of where the next instruction is to
be placed.

When a BRK instruction is executed, this field is
set to indicate the address stacked by the 6502,

pointing to two bytes beyond the BRK instruction

executed.

T T T T T ¥Y¥FINYTTYTTYTTTPTTTOTAEATN

rme ™TrT

TR R EREREEREEEEE R T E T E I E "

This field is used during Monitor commands L and G
(Disassembler and Monitor "GOTO"). During
disassembly of instructions this field is
incremented as required. This field is used for a

Jump Indirect in execution of the Monitor G

Updating of this field is accomplished with the
assistance of the PCADJ routine whenever use
requires incrementing in accordance with the
length of the instructions. ({See LENGTH at 47 or
On return from PCADJ, store A to PCL and Y
to PCH to accomplish update.

This field is used by the 0ld Monitor inm support
of Monitor commands S and T (single instruction
step and instruction trace). For those functions,
it is maintained as a pointer to the next
instruction to be handled.

This field is used as a work area for instruction
step and trace in the 0ld Monitor. The field is
eight bytes long and overlays AlL,H; A2L,H; A3L,H;
The next instruction to be executed
(indicated by the contents of PCL,H) is moved to

this field, possibly modified depending on
instruction type, and then executed here. This

field is not defined in the Autostart Monitor.

Multipurpose Monitor work area:

lee Hex Monitor
Addr Addr Label Description
command »
$2F.)
i $3C XQr
XQTNZ
Hl=67 53D-$43
and A4L,H.
Gl $3C AlL
61 53D AlH

May be clobbered by Instruction Trace in
the 0ld Monitor; see XQT above.

When the Monitor begins processing a command, MODE
is initialized to zero. As the input line is
scanned, hex digits are first placed into A2L,H.
From there they are moved also to AlIL,H and A3L,H
as long as MODE remains zero. When a plus, minus,
colon, or period is encountered, MODE is modified
to indicate which, and AIL,H will continue to

contain the value, terminated by the operator
encountered.

AIL,H is the primary index for the BLANK Monitor
command, memory examine or display.

AlL,H contains the addend for the Monitor ADD
command .

MEMORY ALLOCATION 9

=
Dec Hex Monitor Nec Nex Monitor
Addr Addr Label Description I: Addr Addr Label Description
AlL,H contains the minuend for the MMonitor '! A2L,H contains the port mumber in an input port
SUBTRACT command. select or output port select {control K or P)
, E command .
AlL,H is the source field pointer during the
Monitor MOVE command. - Monitor routine NXTAl increments AlL,H by one and
. then compares the result to AZL,H. TIf A2L,H is
AlL,H is one of the two indices used in the less than AIL,H then Carry is set when cootrol is
Monitor VERIFY command. F returned to the calling program.
AlL,H is the source field from which PCL,H is set) Saf A3T, Multipurpose Monitor work area:
on L and G Monitor commands, and the O0ld Monitor l! s 84l A3H May be clobbered by Instruction Trace in the 014
commands 5 and T, if an address is specified. If Monitor; see XOT above.
no address is used in the input line, then PCL,H r
is the residue of the last command which - AlL,H and A3L,H are both filled from A2L,H during
maintained or used it. Monitor Command processing scan of the input line
as described above regarding AlL,H.
AlL,H is the memory pointer used for cassette tape
READ and WRITE Monitor operatioms. A3L,H is used as the destination pointer during
Monitar STORE command processing.
Monitor routine NXTAl increments AlL,H by one and
then compares the result to A2L,H. If A2L,H is A3L,H is used as a work area bv the Repister
less than AIL,H, then Carry is set when control is Display routine, which is called by the control-E
returned to the calling program. Monitor command, or as part of the single ecvele or
trace operations of the 0ld Monitor.
62 $3E A2L Multipurpose Monitor work area:
63 $3F AZ2H May be clobbered by Instruction Trace in
the 0ld Monitor; see XQT above. [843 ALT, Multipurpose Monitor work area:
07 §43 A4l May be clobbered hy Instruction Trace in the 01d

This field is the receiving field inte which hex
data is stored from the input area during Monitor
Command parsing. When the command itself is
encountered, A2L,H contains the last parameter
entered. While MODE contains zero {until a plus,
minus, colon, or period is encountered) A2L,H is
continually copied into AlL,H and A3L,H. If a
"less than" sign is encountered, A2L,H is
immediately copied teo A4L,H and AS5L,H.

A2L,H is used to terminate examine (memory
display), tape write, tape read, memory move, and
memory verify operations.

AZL,H contains the subtrahend in a Monitor
SUBTRACT command operation.

A2L,H contains the augend in a Monitor ADD command
operation.

A2L,H is the source field and A3L,H is maintained
as the pointer for the Monitor STORE command.

10 MONITORS PEELED

rqTYT TyYyTMTMPTTYTTTY
B EEEREEEEEEREEEEE R EREEE R EEER"

TMmTrmMmmim

Monitor; see XOT above.

This field (and ASL,H) are loaded from AZL,H
during Monitor Command Processor scan of the input
area when a "<" character is encountered.

A4L,H is the receiving field pointer during a
Monitor MOVE command execution.

A4LL,H {s the second field pointer during a Monitor
VERIFY operation.

Monitor routine NXTA4 increments A4L,H by one, and
then drops into NXTAl, which increments AlL,H by
one and then compares the result to A2L,H, If
A2L,H is less than AIL,H then Carry is set when
control is returned to the calling program.

MEMORY ALLOCATION 14

Monitor
Label

Dec Hex
Addr Addr

Description

68 $44 ASL
69 45 ASH

NOTE:
ASH = 845 = ACC

69 845 ACC

78 $46 IREG
71 $47 YREG
T2 S48 STATUS
735 549 SPNT
T4 S4A unused
75 S4B unused
76 S4C unused
77 S4D unused

Multipurpose Monitor work area:

This field is not within the bounds of the area of
XOT, which, in the 0l1d Monitor, overlays AlL
through A4H,

This field is filled from A2L,H as described above
for A4L,H. However, the field is not otherwise
referenced within the Monitor, except that ACC
{below) is also ASH.

This five byte field is a register save area.

With the following exceptions, the 6502 registers
are stored by the SAVE routine and reloaded by the
RESTORE routine.

S-reg is stored at SPNT by SAVE but is never
reloaded.

The A-reg is stored at ACC by the IRQ routine on
either an IR0 interrupt or execution of a BRK
instruction. On a BRK, entry into the SAVE

routine at label SAVI is used to store the rest
of the registers. The other registers are not
stored by the Monitor for an IRQ interrupt.

As described above, the registers are stored in
this area on execution of a BRK instruction.

After execution of a BRK instruction or on
execution of Monitor command control-E, the

contents of this area are used to display the
"registers" on the screen.

The registers {(except S-reg) are loaded from this
area before jumping to the requested location on
execution of the Monitor G command.

In the 0l1d Monitor Step and Trace command
routines, the registers are stored here after each
instruction execution and reloaded before the next
traced instruction is executed.

12 MONITORS PEELED

T ™M™N
B E B EEEEEEEEEREEREEEREREREEE R

TTTT

TTET

T

TreTrTrrrMrYTYTNETTTMMN

Dec Hex Monitor

Addr Addr Label Description

78 S4E RNDL Random number field, 16 bits:

79 S4F RNDH This field is continually counted up by the KEYIN

routine while testing for key pressed. Thus, the
results are effectively random as it doesn’t take
long to overflow and start over. There is no other
reference to this field within the Monitor.

Hi 350 ACL These three two-byte fields are used only by the

81 551 ACH multiply and divide routines in the 0ld Monitor.
B2 552 XTNDL These routines are not called from any place in
#3 553 XTHNDH the Monitor. Therefore, these fields are used
B4 554 AUXL only if a user program makes use of the multiply
85 555 AUXH or divide routines.

The section on Data Manipulation Functions
contains a full description of the multiply and
divide routines.

PAGES ONE THROUGH THREE

PAGE ONE (S0100-01FF)

Puape one is the hardware stack area. Monitor use of this area is
only by means of the 65@2 instructions which use the stack, such as
"MaA, JSKR, RTS, etc. The Monitor does not initialize or set the stack

pointer (S-register) on a RESET or Power On interrupt or at any other
thme.

PAGE TWO ($0200-02FF)

Papge two 1s the Keyboard Inmput buffer area. At label "GETLN" the
X-repister is initialized as an index. At label ADDINP the character
read from the keyboard is stored into page two indexed by the
¥-repister. The result is that on return to the calling program the
characters read from the keyboard have heen stored in memory locations
S and up, the last character stored being a carriage return,

cole $ﬂ” .

PAGE THREE (S0300-03FF)

'npe three contains "vectors" for special handling of certain
Interrupts at the high end of the page. The low end of the page,
through S#3CF, is often used for machine language subroutines.
From S#30@ through $¢3EF is used by DOS.

MEMORY ALLOCATION 13

PAGE THREE ADDRESS TABLE

Hex Dec Function

$@30@-s@3EF 768-1(#7 Not used by the Monitor.

SO3FP-$@3F1 10@8-10¢9 The Autostart Monitor uses this location as the
BRE instruction interrupt vector (address).

SP3F2-5@3F3 1¢01¢-1@11 This is the RESET (Soft Entry) Vector (address)
used by the Autostart Monitor, as described in

the section "RESET Interrupt — Autostart
Monitor".

SP3F4 1¢12 Powvered Up indicator: if the Exclusive OR of
"SAS" with the contents of $@¥3F3 is equal to
the contents of $@3F4 then the RESET (Soft
Entry) Vector is considered valid. Otherwise, a
RESET interrupt will cause the Autostart
Monitor to go through power-up initialization,
including boot of DOS if available.

SHIFS5=-$P3F7 1413-1@15 Reserved for APPLESOFT ("&" wvector instruction).

$@E3IF8-$P3FA 1@16-1¢18 Control-Y Vector {(instruction).

$@3FB-$@3FD 1¢19-1¢21 Non-Maskable Interrupt Vector (instruction).

SP3FE-SP3FF 1$22-1¢23 1IRQ Interrupt Vector (address).

PAGES FOUR THROUGH SEVEN & ELEVEN

Address range S$@4@Q through S$@E7FF is the primary text and low

resolution graphics display area. That is, screen display hardware
displays on the screen the information stored in this part of memory.

Address S$@8P¢ is generally the beginning of memory available to the
user for general program or data storage. However, S$@8@@ through SUBFF
is the secondary text and low resolution graphics display area. By
POKEing -16299 with any value, the screen display hardware can be
directed to display to the screen from this secondary display area
instead of the primary display area. POKE -163(¢,% to switch back to
the primary display area.

Although the hardware will display to the screen from the secondary
display area, the Monitor does not support the feature. That is, the
BASCALC and GBASCALC routines in the Monitor convert the line mnumber
input to the routine to the appropriate memory address for the primary
display area only. Use of the secondary display area is described in
the section "Secondary Display Areas".

Contiguous screen lines are not in contiguous memory locations. The
characters on a screen line are in the same sequence in memory as on

14 MONITORS PEELED

™ n

T
"B R R EE R ERE R R R R R R R R R R R R R E R

TTTTTT

T " ¥Hk

T

TTTT MM

TMPTTMTIT

the screen, bubt the lines are mixed in a manner which simplifies the
hardware display to the screen. The following table indicates for each

line the address in memory for the leftmost character of the line in
both the primary and secondary display areas.

The BASCALC routine in the Monitor computes the memory address for the
line number input te that routine in the A-reg. Using the letters to
designate bit positions in the input line number, the following
Indicates the result of the computataion:

Input line number (A-reg) @EFABCDE
Memory address (BASH BASL) (@@¢@1CD EABABP@R

This can be arithmetically computed, using '"modulce" arithmetic in

place of the ANDs and ORs of machine language. For line number
FIIJ!I (w_ 23) ,

ADDR=1@244256%((L/2) MOD 4)+(128%(L MOD 2)M4@*({L/8)MOD 4)

SCREEN MEMORY ADDRESS TABLE

Line Primary Display Area Secondary Display Area
Decimal Hex Decimal Hex
@ 124 F4d 2(48 rEeolr)
1 1152 B48¢ 2176 #REG
2 128¢ 3509 2304 poga
3 1438 @584 2432 #o8p
4 1536 depp 2560 gape@
5 1664 Hos@ 2688 PA8H
6 1792 W70 2816 (racult)
7 1929 @78d 2944 #B8¢
8 1{64 @428 20088 @828
9 1192 P4A8 2216 #RAS
14 1320 @528 2344 #9238
11 1448 @#5A8 2472 P9Al
12 1576 #628 2604 @A28
13 1704 #6A8 2728 PAns
14 1832 @728 2856 @B28
15 1960 BIAR 2984 @BAS
16 11¢4 #45¢ 2128 @#asi
17 1232 #ang 2256 gang
18 1360 @550 2384 #95¢
19 1488 @5D@ 2512 @on@
248 1616 #65¢ 2640 BASE
21 1744 #6DH 2768 #ADG
22 1872 @75p 2896 #B5¢
23 2 A7 3624 ARDG

It is also interesting to note that although 24 lines of 4@ characters
computes to 96@ hytes, the memory area described above containg 1{24
bytes per display area. The significance Is that some of the bytes in

MEMORY ALLOCATION 15

pages four through seven are not displayed on the screen. These bytes
are eight groups of eight bytes each. This space has been set aside or
allocated for use by peripheral controller cards in slots one through
seven. The following table shows the allocation.

Misuse of these locations can be easily accomplished, with potentially
serious results. Note that if an image of the screen is generated
elsewhere and moved to this area in a block, the locations identified
below will be modified. If a program is }oaded from tape with the
Monitor command mmmm.nnnnR, and if mmmm is less than $$4¢#, then the
bytes in the following table will be loaded from the tape. If an
attempt is made to save the screen area to disk and later BLOAD it to
the screen area, results can be confusing. The Disk Controller card,
and possibly some peripheral device interface cards keep control
information in these areas. TFor example, doing the above mentioned
BLOAD from drive 2 when the BSAVE had been done from drive 1 will
result in the disk switching back to drive 1.

The Reference Manual indicates that one must be sure that Scroll
Window definition fields WNDLFT and WNDWDTH must not add up to more
than 4@¥. Violation of the bytes in the following table will be the
unfortunate result if this caution is not observed.

PERIPHERAL CONTROLLER WORK AREAS

Common Slot Slet Slot Slot Slot Slot Slot

(any/all) 1 2 3 4 5 6 7

Decimal Hex
1144 @478 @479 @4TA #ain @47c Pa7n @$47E B4TF
1272 B4F8 #4F9 @a4FA B4FB PaFC B4FD B4FE B4FF
1406 @578 579 #57A @#57B @#s7c #57D @#S7E @S7F
1528 #5F8 #5F9 @5FA {#5FB @#SFC @#5FD @5FE @5FF
1656 @678 #6779 F6TA P678 #ge7c #67D @67E peirE
1784 @#6F8 @AF9 @6FA (6FB @6FC @6FD (@6FE (6FF
1912 @778 #779 d77A @778 @77C @770 @77E @77F
204@% (FIF8% @FIF9 #7FA @7FB @7FC @7FD @IFE @IFF

* Location 2(4% ($¥7¥8) has special significance. This location should
be loaded with $CN, where N is the slot number of the active
peripheral, whenever an interrupt may occur and the ROM/PROM expansion
scheme 1s in use. This is necessary so that the return from interrupt
software used allows the proper peripheral card to resume operation.

16 MONITORS PEELED

TTT™M™"N

TTTMTMrTrTArFrPYYTTTTTTYTYTPTNYFTRETYTT

CHAPTER 2

INPUT AND OUTPUT

The default operation of the screen is as a scrolling device: new data
is entered or ocutput at the bottom of the screen and all above is
shifted up line by line until the oldest information disappears off

the top of the screen. With a little extra work in the user program,
it {s also possible to use the screen as a formatted display.

Following is a description of the effects of that type of use, and

some suggested solutions to the situations encountered.

Characters generated by the user program for display on the screen are
handed to the Monitor one character at a time. The screen output
handlers check for control character vs. display character, and operate
in accordance with what they find. For example, output of a carriage
return character or line feed character while the cursor is on the
bottom line of the screen will cause a scroll operation to take place.
If the screen is being used with a format instead of as a scroll
device, then the program can easily avoid output of a carriage return
or line feed when the cursor is on the bottom line of the screen.

The easiest way for the user program to read information from the
keyboard is to call the Monitor at the point where it will read in a
line (up to a carriage return) before returning control to the calling
program. When this is done, the input information is always available
at the same place in memory. There is, however, a conflict between
using this type of a call and using the screen as a format type
display. While the Monitor is receiving the keyboard input, it
"echoes" the characters to the screen at the current cursor location.
When end of input is signaled by a carriage return, the Monitor clears
the cursor current line from cursor to the right end of the line
(within the Scroll Window}. Thus, the user program must make sure that
before asking for input from the keyboard the curser is placed where
there is no significant data to the right.

It is possible to divide the screen into scroll area and non-scroll
area. Many complications arise from this method of operation, so the

recommended solution to the format display problem is to leave the
screen full scroll and avoid scroll services when they are not
desirable.

The entry points and qualifiers for using scroll and non-scroll areas
will be found in the section on Text Output Without the Scroll Window.

KEYBOARD INPUT DIVISION OF LABOR

The Moniter routines supporting keyboard input are designed to echo
the keyboard input to the screen {through COUT) at the current cursor
position, and store the entered characters in the keyboard input area
($ﬁ2@9 $@2FF) for the convenience of the calling program. The
executing program may position the cursor anywhere (in the Scroll
Window) before calling the Monitor keyboard input routines. On entry
of a carriage return from the keyboard, the Monitor keyboard input

KEYBOARD INPUT AND SCREEN OUTPUT 17

routines will cause return of control back to the calling program with
the character count plus one in the X-register and a carriage return
in the input area as a terminator. The program need not look into the
screen refresh memory to determine what was entered. (Note: The X-
Register begins with a zero, so that if five characters are entered,
the X-Register will reflect 4, although the actual walue returned

will be 5. X is incremented for the carriage return as well.

The routines described below are included in the address table. The
following section, "User Program Calls ...", describes program setups

for calling some of these entry points. Hex address, + Decimal

address, and - Decimal address are given in brackets beneath each
routine.

TABLE OF ROUTINES

Routine Description

GETLNZ Entry at this point causes output of a carriage return
[8FD67] (through COUT) before going to GETLN to write the prompt
[64871] character and read the data.

[- 665]

GETLN Entry at this point is with the cursor properly positioned

[$FDBA] (CV, BASL,H, and CH) as described in the section regarding

[64874] Text Output Within the Seroll Window.

[- 662]
GETLN prints the prompt character and initializes X-reg for
indexed storage of the input characters into the input area.
Control then goes to NXTCHAR.

NXTCHAR This is the top point in the character input loop. RDCHAR

[$FD75]) is called to get a character into the A-reg. On return the

[64885] A-reg is tested for presence of the control-U (right arrow on

[- 651] the keyboard) and if it is found, the A-reg is then loaded
from the screen refresh memory ((BASL),Y), assuming that the
Y-reg contains the same value as CH.

If the A-reg value is S$Eff or greater, the lower case letter
is converted to upper case by AND with $DF. The character is
then stored from the A-reg to the input area.

If the character is a carriage return, CLREOL is called to
clear to blanks the rest of the window line, and then a
conditional branch transfers control to COUT so that the RTS
exit of COUT will return control to the calling program with
the X-reg indicating the input character count +1. That is,
the input is in memory locations $@2¢ through $¢20¢,X where
5¢20@,X contains the carriage return.

If the character is not a carriage return, then control is
transferred to the NOTCR routine for display on the output
device, and for interpretation with regards to control
character affecting the input line.

18 MONITORS PEELED

rFPrTrTMM"TPTTTITITANTYTETYTTYTTYTN

A E R EEREEREEEEE E R R R E R E R E T E "

rTrToTrmmTimw

Routine

Description

NOTCR

[4FD3D]
[64829]
[- 797]

NOTCR1

[$FD5F]
[64863]
[- 673]

CANCEL
[$FD62]
[64866]
[- 67¢]

BCKSPC
[$FD7L]
[648811]
[- 655]

RIDCHAR
[$FD35]
164821]
[- 715)

This routine receives control with the character of interest
in (IN,X). The current setting of INVFLG is saved on the
stack, while INVFLG is set to S$FF so that the character
"echoed" to the screen will be white on black., COUT is then
called with the character in the A-reg.

On return from COUT, INVFLG is restored frem the stack. The
character at IN,X is then tested for either of two special
keys: Backspace (left arrow) or (line) Cancel {(control-X).
If Backspace, go to BCKSPC. If Cancel, go to CANCEL.

If (IN,X) is neither Backspace nor Cancel the value of X-reg
is tested to determine whether the input area is full or
almost full. If there are more than 247 characters in the
input area, a call to BELL is used to signal to the operator
that the area is almost full.

After or without the margin warning bell, this routine gets
control. Here, the X-reg is incremented to point at the
next location in the input area to be filled. If, however,
the result is overflow to zero, then entry of the Cancel key
is simulated by falling into CANCEL. In the normal case,
after incrementing the X-reg, control goes back to NXTCHAR
to continue with character input and line building.

This routine prints a back-slash through COUT to indicate
the action taken to the operator. Control is then passed to

GETLNZ to initialize for entry of a new input line —~ the old
one is pone.

On entry to this routine, the backspace character has

already been printed through COUT with resulting backward
movement of the cursor. TIf the current value in X-reg is
zero, control is transferred back to GETLNZ for printing
prompt and re-initializing for line input. Otherwise, the X-
reg is decremented with control going to NXTCHAR to resume
input of characters.

This routine calls RDKEY to get the next character placed
into the A-reg. If, on return, it is found that the Escape
key has been pressed, this routine calls the appropriate
routine for reading the next character and performing the
requested Escape key function. In the 0ld Monitor, control
is passed to the ESCI routine for this purpose, after a JSR
to RDKEY to read the next character. In the Autostart
Monitor, detection at RDCHAR of an Escape character transfers
control (via ESC including RDKEY) to ESCMEW, which has the
capability of handling multiple escape functions after a
sinple depression of the Escape key.

After any requested escape functions have been performed,

control returns to RDCHAR as if there had been no
interruption.

KEYBOARD INPUT AND SCREEN OUTPUT 19

Routine

Description

RDKEY

[$FDYC]
[66780]
[- 756]

KEYIN

[$FDIB]
[64795]
[- 741]

ESC

[$FD2F]
[64815]
[- 721]

ESCNEW

[$FBAS]
[64421]
[-1115]

This routine picks up and saves in the A-reg the character
from the screen refresh memory area at BASL,H,CH (leaving
the Y-reg filled with the contents of CH). It then chanpes
that character in memory to blinking to indicate current
cursor position.

This routine asks for the next input character to be placed
in the A-reg by doing an indirect jump via KSWL,H, which is
normally pointing at KEYIN. Return is therefore to the
caller of RDKEY, not to the RDKEY routine itself.

This is the routine which gets the next input key from the
keyboard hardware. There are two required actions and two
extra actions taken by this routine. The required actions
are reading the keyboard input buffer over and over again
until it is determined (by presence of the $8@ bit) that a
character has indeed been read. In this case, keyboard input
buffer refers to the $1¢% byte buffer atr $28@, and not to
the location at $C@@@. The sign flag is set or not by
checking the status of the value at $C@H@@. If that value is
positive, the routine loops back to KEYIN., If that wvalue is
negative, the value of SCP@P is picked up and the keyboard
strobe is referenced to prepare for the next keyboard input.

The auxiliary actions taken by this routine are first, to
count up the random number field, ignoring overflow, and
second, to restore to the screen area the character modified
by the RDKEY routine to remove the blink. This restore is
accomplished by storing the A-reg at (BASL),Y, assuming that
RDKEY loaded it. This is accomplished before the keyboard
register is read into the A-reg.

Return to the caller (of RDKEY) is accomplished by an RTS.

This routine is entered from RDCHAR if the A-reg is found to
contain the Escape key code. It reloads the A-reg with a new
key by calling RDKEY. In the 0ld Monitor, it then calls ESCI
to perform the requested single function. In the Autostart
Monitor, ESCNEW is called to perform the requested functions.
In either case, ESC is positioned such that the RTS which
terminates FEscape key processing returns control to RDCHAR.

This routine exists onlv in the Autostart Moniter. It is
the routine which supports cursor movement without data
transfer; the Escape key functions I, J, K, and M. If the
key next pressed is one of these four, the appropriate '"old"
funetion (Escape functions C, B, A, and D, respectively) is
called. On return to ESCNEW, RDKEY is again called to get
(and operate upon) the next character from the keyboard.

20 MONITORS PEELED

TN

TrTTTTT
B B EEREEEEEEEEREEEREEREEEEER

rTrTroTrTrYyY ¥y YTTTTTTTTTT

Routine

LS

[sFa2C]
| 64556]
[— 98]

Description

It the key pressed is not I, J, K, or M, then ESCl is
entered by JMP instead of JSR so that the RTS will return to
the caller of ESCNEW instead of to ESCNEW.

In the 0ld Moniteor this routine is called by the RDCHAR
routine if the Escape key code is found in the A-reg by that

routine. In the Autostart Monitor, control is passed in this
case to the ESCNEW routine which then calls ESCI or jumps to

it depending on which key is pressed next.

ESCNEW translates I, J, K, or M to C, B, A, or D
respectively before calling ESCl, which returns to ESCNEW.

If the key is other than I, J, K, or M, then ESCNEW JMP’s to
ESCl with Carry set, to have the appropriate function

performed. 1In this case, the next RTS will return control
to the RDCHAR routine.

When ESC1 is called, the contents of the A-reg (and the
condition that Carry is "set') indicate the action to be
taken. Control is transferred (conditional branch) to the
appropriate Scroll Window Service routine to move the cursor
without transferring data, or to clear all or some of the
screen, or some combination of these.

CALLS TO KEYBOARD INPUT ROUTINES

The following paragraphs describe how to set up for calls to the

various entry points in the Monitor for keyboard input, and what the
results will be.

TABLE OF KEYBOARD INPUT CALLS

Rout ine

GETLNA

Description of Set-Up

Write carriage return and prompt character, then read a line.

Set-Up:
X-reg, Y-reg, and A-reg are insignificant.
CH is insignificant.
CV should point to the line in the Scroll Window where
input is to begin.
BASL,H is insignificant.

Results:
CR is written, scroll takes place if appropriate.
Prompt character is written through COUT.

Keyboard is read character by character. Each character
is placed at $@2(%,X and X is then incremented.

KEYBOARD INPUT AND SCREEN OUTPUT 24

Routine

GETLN

NXTCHAR

Description

Each character is "echoed" to the screen at cursor
position and the cursor is then advanced.

On reading a carriage return, control is returned to
calling program.

On Return:

A-reg contains a carriage return code ($8D).

X-reg contains the number of characters read hefore
carriage return.

Y-reg contains contents of WNDWDTH.

Location $#2¢,X contains a carriage return.

CH contains zero.

CV contains line number, current value.

BASL,H contains memory address for CV, WNDLFT.

Window line is blank to the right of the end of the
echoed input.

Write prompt character, then read a line.

Set-lUp:

X-reg, Y-reg, and A-reg are insignificant.

CV and BASL,H should be compatible, pointing in the

Window.

CH indicates where on that line the prompt character is to
be placed, to be followed by the echoed key input.

Line address at which input is to begin must be in
BASL,H. The Line mumber in CV will be calculated and
set in BASL,H after a carriage return has been entered.

Scroll

Results:
Same as above for GETLNZ, with noted exception.

On Return:
Same as above for GETLNZ.

Enter here to bypass print of prompt character to the screen.

Set-Up:
X-reg should be zero to begin storing input at $@2¢¢.
Y-reg and A-repg are insignificant.
CV and BASL,H should be compatible, pointing in the Window.
CH indicates where echoing of keyboard input is to start.

Results:
Same as above for GETLN.

On Return:
Same as above for GETLNZ.

Note: For all the above, Escape key functions are supported as
described in the reference material for the Monitor you have installed.

Also, control-U (right arrow) is supported.
recognized in the keyboard buffer,

When that character is
it is replaced in the A-register by

the contents of the screen memory at the current cursor position.

22 MONITORS PEELED

™ ™

T T
(=T =T = = = =

TT

T T

TroerryrTTmMPTTTMN

TMrmMmmwmm

a

(=1 =V = =)

Routine

Description

RDCHAR Read single character thru KSWL: return to caller in A-reg.
Set=Up:
X-reg is insignificant, and will not be clobbered.
Y-reg is insignificant.
A-reg 1s insignificant.
CV and BASL,H should be compatible, pointing in the
Scroll Window to the line where input is to begin.
CH indicates the horizontal position in the Scroll Window
where cursor position will be indicated by blinking.

Results:

The screen character at the cursor position {(BASL},(CH)
will be set to hlinking until a key is pressed.

If the Escape key is detected, the appropriate routines
will be called to handle the requested function.

Cursor right arrow (control-U} will be returned to the
calling program, not the contents of the screen at the
CUTEOT .

Cursor left arrow key (control-H} will be returned to the
calling program.

Characters read from the keyhoard will not be stored in
the $@20@ area.

After the character is read, the blink will bhe turned off
at the cursor position, but the key just read will not
be echoed to the screen, nor will the cursor (CH)} be
advanced.

Cancel input line {control-X) service is not defined
as the data is not heing stored in the $¢#20¢ area.

No special note is taken of carriage return, because the
rest of the Monitor KEYIN Routine is not called. It is
up to the calling program to take appropriate action on
entry of a carriage return.

On Return:
A-reg contains the value of the key pressed.
Y-reg contains the contents of CH.
X-reg is not affected by the routines called.
CV, CH, BASL,H will have changed only if an Escape key
function has bheen utilized.

ROKEY Read single character thru KSWL: return to caller in A-reg.
Set-Up:
¥-reg, Y-reg, and A-reg are insignificant.
CV and BASL,H should be compatible, pointinpg in the
Scroll Window.
CH indicates the horizental position where the cursor will
be shown hy blinking.

KEYBOARD INPUT AND SCREEN OUTPUT 23

Routine Description

Results:
The character on the screen at the cursor position is set
to blinking.
KEYIN routine is given control wia (KSWL) for physical
reading of the kevhoard.
Return {(RT5) in KEYI¥N returns to the caller of RDKEY, not
to the RDEKEY routine.

On Return:

A-reg contains the character from the kevbhoard. 1t may
be any character, including Escape, carriage return,
right or left arrow, or any other control character.

¥-rep is unchanged from the call.

Y-reg contains the contents of CH.

The character in the screen area at the cursor pesition
has been restored to whatever it was hefore it was set
to hlink by RDKEY.

CV is used to. calculate the new line.

BASL,H reflects the recalculated address.

CV remains unchanged.

KEYIN Read single character from kevboard: return to caller in A-reg.

Set=1p:
¥-reg is unused and unaffected across this routine.
A-reg input to this routine is what will be stored into
the screen area at the cursoer position (BASL),Y to
remove the hlink condition after a key is pressed.

Y-reg is set to be used to store the A-reg into the screen

area to remove the hlink at (BASL),Y.

CH and CV are not referenced, but should be appropriately
set. BASL,H are used as described for A-reg and Y-reg
above.

Results:
On return to the caller, onlv the A-reg has been changed.
It contains the input from the kevhoard register.

KEYIN ROUTINE REPLACEMENT

There are cases in which it is desirable to replace the physical
keyboard input routine with a routine which either reads from the
kevboard and preprocesses the input, or gets the information to feed
to the reading program from some source other than the kevboard. The
requirements of such a program in replacing the KEYIN routine are
described below. Placing the program/routine into effect is

accomplished by storing the entry point in KSWL,H.

24 MONITORS PEELED

™™

T EEEEE T T R R R E R R "

T T

TTTT

TrerrYyYTrTTTYTTTTrTTM

T

The replacement routine should manage the following resources as
Indicated.

A-reg Store the A-reg at (BASL),Y, then load the A-reg from
whatever source is to be used.

K-resq Must be unaltered. Save on entry and restore on exit if
it must be used by the replacement routine.

Y-rep Use as indicated above for A-reg.

It must not be changed on return from contents on entry,
so0 save and restore if it must be used otherwise. (This
caution is not required, however, if the source of the
input prevents FEscape key and right arrow from being
entered. In such ecase, the Y-reg is expendable.}

CH These are all used for echoing the "keyboard" input,
oV so the replacement routine should either leave them
BASL,H alone or manipulate them in an appropriate manner.

NOTE: On replacing the pointer to KEYIN at KSWL,H, it is generally
safer to pick up and store the current contents of KSWL,H in a

save area hefore placing the address of your routine, and then
restore KSWL,H from that save area when taking the replacement

routine out of service.

HOTE: If you replace the contents of KSWL,H with the address of your
routine while using DOS, expect the unexpected. DS uses both
CSWL,IT and KSWL,H, and periodically restores them to appear the
way DOS likes to see them regardless of current contents.
Depending upon your application, it may be a good idea to
replace both pointers on a temporary basis so that echo to the
sereen will not pass through DOS. But remember to repair both as
soon as possible.

KEYBOARD INPUT MONITOR ROUTINE

here are many points in Keyboard Service which a user program could
usefully eall. However, hecause they are generally different locations
fn o continuous string of instructions, and all instructions after the
polnt of entry will be used, sections of this table of addresses are in
Honitor sequence rather than in sequence by potential usability.

Mote that once the Monitor is jumped to at the specified point, all of
the initialization described after that entry point is also performed.
This Is implied by the & at the end of each function description.

KEYBOARD INPUT AND SCREEN OUTPUT 25

ADDRESS TABLE 1—CHARACTER INPUT

Function Hex +Dec
Addr Addr

=Dec Monitor

Addr

Registers
Destroyed

™hn

BOTH MONWITORS
Call RDKEY to get next character FD35 64821
into A-reg.
Compare to $9B (Escape).
If = BR to ESC to call for next
character and do Escape function.
Else, RTS.
Set screen to blink at cursor FDUC 64780
saving original character in the
A-reg from (BASL),Y &
Jump Indirect (KSWL) to KEYIN FD18 64792

Increment random number at RNDL,H FD1B 64795
while polling keyboard register.

Store A-reg to (BASL),Y (clear FD26 H4LBH6
blink set by RDKEY routine). &

Load A-reg from keyboard register FD28 648(8
and clear keyboard strobe and RTS.

Using character in A-reg, with FC2C 64556
Carry set, BR to routine for
Escape key service.

HOME clear scroll window
ADVANCE cursor right
BS cursor left
LF cursor down one line

up cursor up one line

CLREOL clear to end of line
CLREOP clr to end of window

other ignore: RTS

mEC O > @

Set port ¢ (keyboard) for input. FEBY9 65161

=715

-756

~744
=741
-73¢

=728

-98¢

=375

A,Y

ALY

ALY

TT

TTT

OLD MONITOR ONLY
Call RDKEY for Escape key service & FD2F 64815
Call ESCl with character in A-reg FD32 64818
and Carry set to do indicated
function. Return is to RDCHAR.

=721
=718

AUTOSTART MONITOR ONLY
Call RDKEY for Escape key service & FD2F 64815
Call ESCNEW with character in A~reg FD32 64818
and Carry set to do indicated
function. Return from Escape
processing is to RDCHAR (above).

26 MONITORS PEELED

=721
=718

EE B R BN N NN N N NN NN

reYy ¥y YyYr*TYTVYYT®Y*TYY®*T¥®*rTrYTrNYRT

i

i

Function Hex +Dec ~Dec Monitor Registers
Addr Addr Addr Label Destroved

Set Carry flag and JMP to ESCI FB97 644017 -1129 ESCOLD A X
to handle Escape key functions
A, B, C, D, F, F.

Handle Escape key functions FBY9R H4411 -1125 ESCNOW ALY
I, J, K, M. Translate to

D, B, A, € and call ESCOLD.

Then RDKEY to get next character

and drop into ESCNEW to continue

Escape key processing.

Escape key processing entry point. FBAS 64421 ~1115 ESCNEW ALY
If A-rep contains I, J, K, or M

then go to ESCNOW to translate

and handle it with return to

ESCNEW. Otherwise go to ESCOLD

to handle this entry and exit

from Escape mode.

RASL,H 4@-41 $28-529
KSWL, H 56-57 $38-539

ADDRESS TABLE 2—LINE INPUT

Logically speaking, the place to start below is GETLNZ, but the
sequence of presentation here is the sequence of instructions in the
Monitor because of heavy use of "fall into" next code segment.

Note that once the Monitor is jumped to at the specified point, all of
the initialization described after that entry point is also performed.
This is implied by the & at the end of each function description.

Function Hex +Dec ~Dec Monitor Registers
Addr Addr Addr Label Destroyed

I'cho keyhoard inmput thru COUT to FD3D 64829 -7¢7 NOTCR A
the screen, from IN,X, with
INVFLG temporarily set to $FF. &
Pick up character from IN,X; FD4D 64845 -691 A
i{f $88 goto BCKSPC.
if $98 goto CANCEL.
if X-reg (input index) greater
than $F7 fall into FD5C.
lilse poto NOTCRL, hypass Bell.

Sound bell if X indicates 248+ FDSC 64860 -676
input characters. &
Increment X-reg; FD5F 64863 -673 NOTCRI X

If X not zero goto NXTCHAR.
If ¥=0 fall into CANCEL.

KEYBOARD INPUT AND SCREEN OUTPUT 27

Function Hex +hec =Dec Monitor Registers
Addr Addr Addr Label Destroyed
Load $DC (\) into A-reg. FD62 64866 —67(0 CANCEL A,X,Y
Backward slash indicates line
input cancelled. &
Call COUT to print A-reg. FD64 64BER —-668
Then fall into GETLNZ. &
Print carriage return thru COUT., & FD67 H4B7]1 -665 GETLNZ ALK, Y
Load PROMPT into A-reg. & FD6A 64874 -662 GETLN AX,Y
Call COUT to print A-reg. & FD6C 64876 -66(
Load X-reg with $fl for passage FDBF 64879 -657 AKX
thru backspace operation.
If X=f§ goto GETLNZ to start over. FD71 64881 -655 BCKSPC A,X,Y
Else, decrement X-reg and
fall into NXTCHAR.
Call RDCHAR to get next character. FD75 64885 -651 NXTCHAR A

If character received is ctrl-U
($95, right arrow) pick up the
screen character from (BASL),Y

to replace it in the A-reg. &
If A-reg greater than S$DF, rthen
AND against S$DF to make it

upper case. &
Store A-reg to input area at IN,X.
Compare to carriage return.

Goto NOTCR (above) if not.

Else, call CLREOL to clear the
rest of the line, then print
carriage return thru COUT,
using RTS from that function to

accomplish return to caller of
keyboard input.

FD7E 64894 —642 CAPTST 74

FD84 649¢01 -636 ADDINP

IN =5@2P, keyboard input area.
INVFLG is at $32 (50).

OVERVIEW—TEXT OUTPUT TO THE SCREEN

The highest level of support in the Monitor for text output to the
screen is scroll device support. In addition, the Monitor contains
many components which support use of the screen in a formatted manner.
Because there are so many ways to write text to the screen, the topic
of screen output has been divided into the following sections:

TEXT OUTPUT WITHIN THE SCROLI, WINDOW
deseribes the normal manner of text output, defining the fields in

page zero which are used to control this function, and which are
used in the descriptions in the following sections.

28 MONITORS PEELED

rTrrTrrYyYTYTTTTTTTN

T
" & @ & w

L (B . G S . e G s s s N

" A A & W

SCREEN FORMAT CONTROL
identifies the entry points by means of which display operation

(full text, full graphics, mixed LORES graphics and text), Scroll
Window setup, and character display mode (black on white or white

on black or blinking) are established or modified.

S5CROLL WINDOW DATA MANIPULATIONS
describes Monitor calls which elear all or part of the Scroll

Windew, set parts of the window to some user specified value, or
cause conditional or unconditional scrolling of the window.

CURSOR POSITION CONTROL
describes the ways and means of moving the cursor relative to its
current position, or moving it to some location independent of its
current position.

GENFERAL TEXT TO THE SCREEN
deseribes the Monitor entry points to output user program
generated data to the screen or to the current output device if
CSWL has been modififed. Also, entry points are described to
transmit standard types of output (blanks, bell code, carriage
return) to the output device (generally screen}.

TEXT OUTPUT WITHOUT THE SCROLL WINDOW
describes the entry points used for placing characters on the
screen outside of the Seroll Window, and for reading the keyboard
when echo to the Scroll Window is to be performed.

SECONDARY DISPLAY AREAS
describes various ways of using the Secondary Text area, even for
limited Seroll Window functions such as allowing keyboard input
echo to go to the Secondary area.

Any entry point which fits into more than one category will be found
in each appropriate address table.

OUTPUT WITHIN THE SCROLL WINDOW

Seroll Window operation is compatible with printer or typewriter

output in that new characters are displaved to the right of previous
output, and new lines are displayed below previous lines. It is this
mode of operation which is described in this section. That is, this
section describes "printing” information by means of the CSWL vector

to the screen or to a printer type device. The section on General Text
to the Screen describes use of the screen, bypassing the CSWL vector
and making direct use of the Secroll Window output routines.

The normal method provided in the Apple II for displaying output
information is by "“ecalling" COUT with the character in the A-reg for
each displayable character or format control character (such as a
carriage return). At COUT, a JuMP Indirect is done via the CSWL vector
to the routine which will place the character on the selected medium

KEYBOARD INPUT AND SCREEN QUTPUT 29

or accomplish the indicated control function. When the system is
initialized, this vector is set to point to COUT1 which supports
Scroll Window output to the screen. If the user sets a different
output device (by PR#n in BASIC or ectrl-P in Monitor mode), then the
CSWL vector will be set to pass the output bytes to the selected
peripheral controller card instead of to the screen. Depending on
which peripheral controller card, and which controls are active, rthe
program on that card may place the character on the output device, and
then JuMP to COUT! te write it also to the Scroll Window.

The normal mode of text output to the screen is in "scroll" mode. In
this mode, new information is written to the bottom line of the

screen, and the contents of the screen are moved up, up, and away as
required to allow entry of new information below the old. This mode of
output is used in APPLESOFT or BASIC "PRINT" statements. This is the
mode of output used by any Monitor command which displays data to the
screen.

As new characters are written to the screen, they are placed at the
position of the ecursor. The cursor position is a location on the
screen (and in screen refresh memory) specified by the contents of
certain fields in page zero. Also, the Seroll Window is a portion (or
all) of the screen as defined by the contents of certain fields in
page zero. There is no special display hardware involved with the
scrolling function. Routines in the Monitor move data in the screen
refresh memory as required to support the serolling function.

The fields in page zero describing the Scroll Window indicate the left
column and width, and the top and hottom lines, as described here.

The cursor position is defined in various fields, and unless a user
program interferes they will be compatible.

The screen line number of cursor position is contained in the field
C¥. CV indicates the line mumber of the cursor relative to the top
line of the screen, not the Scroll Window. (Note that this is
different from CH, described below.) The screen refresh memory
location which corresponds to this line number is maintained in the
two byte field (BASL,H). Note, however, that if the left edge of the
Seroll Window is not the leftmost character of the sereen, BASL,H will
have been adjusted to peint to the leftmost character position on that
line within the Scroll Window. Thus, a program may interrogate CV to
determine the line number of the cursor, but the program cannot just
POKE a different line number into CV to move the cursor as BASL,H must
be updated as well.

The horizontal position of the cursor is maintained in CH. The value in
CH is relative to the left edge of the Scroll Window, not necessarily
to the screen. When a character is being "written'" or "printed" te the
screen, the routine which places the character in screen refresh memory
uses the Y-reg for horizontal position, in the assumption that it has
been loaded from CH. In the address table, each description indicates
whether the routine being called uses CH or the Y-reg.

30 MONITORS PEELED

rTrTT™T™"™
@ 8 @ & @ =

TTT

TYyT™TANRN
" &

™ T
W

rTATTTOTAT

W E s

For machine language programs, Scroll Window output is most easily
accomplished by a JSR teo COUT at SFDED (-531) with the byte in the A-
reg. From BASIC the same thing is accomplished by PRINTing a wariable
in which the byte has been stored. In BASIC, of course, a whole string
can be written with a single command.

As the characters are passed through COUT1, they are modified, if
necessary, to be written in white on black, black on white, or
flashing, in accordance with the contents of the field called INVFLG.
This field can be set (POKEd) at any time, and is immediately
effective on all future characters printed by the program until it is
again modified. This function only applies to program print output.
During keyboard entry, INVFLG is temporarily changed to $FF as each
input character is echoed through COUT,

The two byte field BAS2L,H is described below although it is rather
useless for user program reference. It is a work area used only
during a scroll operation.

PAGE ZERO FIELDS

Dec Hex Routine

Description

32 5200 WNDLFT Left column of the Seroll Window:

Range is @ to 39 (827).

This field is used only in VTABZ. The contents,
when changed by user program, become effective on
the next scroll operation, clear to end of page
operation, or carriage return output. CH contains

cursor horizontal position relative to (WNDLFT).

After changing the contents of WNDLFT, either CALL
VTAB or output a carriage return to make it take
effect.
33 521 WNDWDTH Width of the Seroll Window:
Range is 1 to 4@—-(WNDLFT).
When a character is written through COUT to the
screen it is placed at (BASL),(CH), after which CH
is incremented. At that time (CH) is compared with
(WNDWDTH) to determine whether the cursor has
exceaeded the right margin of the Scroll Window.
34 $22 WNDTOP Top line of the Scroll Window:
Range is @ to 22 ($16) for full text screen.
Range is 2} to 22 (414 to $16) for mixed graphics
and text. This field is used during a scroll
operation to indicate where the operation should
start.

KEYBOARD INPUT AND SCREEN OUTPUT 31

Dec

35

36

37

4g
41

Hex

523

$24

$25

528
$29

Bottom line of Scroll Window +1:

Range is (WNDTOP)+1 to 24 ($1R8).

WNDBTM indicates the first line number below the
Contents of WHNDBTM are tested only on
output of a carriage return ($8D) or line feed
($8A). Tt is used by Clear to End of Page and hy

Displacement from WNDLFT where next character to
the screen will be placed:

Range is ¢ to (WNDWDTH)-1.

After the screen output routine STOADV places a
character into the screen area as part of normal
character output, CH is then incremented and
compared to WNDWDTH. If CH is not low then a
carriage return will be simulated.

Note that CH is used for echoing keyboard input to
the screen by the Monitor routines GETLN etc.,
because COUT is used.

Vertical screen position (line number) for next
character to be written to the screen:

Range is ¢ to 23 ($17).

The content of CV is relative to the top of the
screen, not to the top of the Scroll Window. It
may be set by loading the desired line number into
A-reg and calling TABV. It may bhe set by POKEing
the line number into CV and then calling VTAB.
Actual storage of a character into the screen area
includes use of BASL,H for line number, not CV.
The calls above to VTAB or TABV are to set BASL,H
from CV for immediate future reference.

If CV is at or below WNDBTM, it will remain on
current line as carriage returns go by while the

contents of the Seroll Window will be scrolled for

This two byte field is the memory address for the

Routine Description
WNDBTM

window.

Scroll routines.
CH
cv

each.
BASL
BASH

left end character position of the current text
line, within the Scroll Window. The contents are a
function of CV and WNDLFT,

This field is set by the BASCALC routine to point
to the memory address for the left end of the line
specified in the A-reg. This call to BASCALC is
usually accomplished by the VTAB routine, which
then adds (WNDLFT) to BASL,H to point to the left
end of the line within the window.

32 MONITORS PEELED

T™"

TT
@ B E e A E R e R A&

rTYNYTYTAETYTT

TTrTTTYYTYTYTTTT

T

Description

Dec Hex Routine
42 524 BASZL
43 528 BAS2H
518 532 INVFLG
53 535 YSAVL
54 536 CSWL

55 537 CSHW

This two byte field is used as a work area only
during a scroll operation. It is the destination
line pointer used as each line is moved to the
position above current.

This byte is a mask used by COUTI to cause
characters written to the screen area to display
white on black (INVFLG=5FF) or black on white
(INVFLG=3%3F) or flashing (INVFLG=$7F). This field
is set to $FF when a RESET occurs by the routine
at SETNORM. The routine called SETINV can be
called to set reverse video. The Monitor does not
set flashing.

Note: INVFLG=87F does not cause all characters to
flash: the upper Z bits of the character must be
#1 for flashing to occur.

This byte is a save area for the Y-reg across a
call to the screen output routines. Y-reg is saved
and restored in the COUTI routine.

This two byte field containg the address of the
routine which is to receive and dispose of output
characters. When the RESET key is pressed, this
field is initialized to point to COUTI to send
output characters to the screen. Entering a
Monitor Command nPc (n=p0rt mumber, Pec=control-P)
will cause the Monitor to set CSWL,H to CnfP@. The
routine at that location will then receiwve (in the
A-reg) each byte "written' through COUT, which is
a JUP (CSWL).

If the Monitor Command "§¥Pc'" is executed, CSWL,H
is set to point to COUT1 instead of to CP@R.

SCROLL WINDOW OUTPUT ROUTINES

Function Hex +hec -Dec Monitor Registers
Addr Addr Addr Label Destroyed
Jump via CSWL, character print. FOED 65005 =531 COUT Tone
Write hyte in A-reg to screen at FDF@ 65038 =528 COUT1 none
cursor (CV),(CH) using INVFLG and
gupporting cursor move.
Write byte in A-reg to screen at FDF6 65@14 =522 COUTZ none

(CV),(CN)Y with cursor move but

not THVFLG.

KEYBOARD INPUT AND SCREEN OUTPUT 33

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Print carriage return thru COUT. FDBE 649170 —-6Z6 CROUT A

Print thru COUT "ERR" and bell code.FF2D 65325 =211 PRERR A

Print bell code ($87) thru COUT. FF3A 65338 -198 BELL A

Set BASL,H from CV (and WNDLFT). FC22 64546 -99¢) VTAB A

Set BASL,H from (A) and WNDLFT FC24 64548 -988 VTARBZ A

without regard to CV.

Set BASL,H to left end of screen FBCL 64449 —=1(87 BASCALC A

line (not window line) in A-rep.

CH 36 $24 WNDLFT 32 524

cv 37 $25 WHNDWDTH 33 521

CBASL,H 38-39 §26-27 WNDTOP 34 $22

BASL,H 4@-41 528-29 WNDBTHM 35 5§23

INVFLG 56 532

SCREEN FORMAT CONTROL BY ROUTINE

This table identifies the places in the Monitor
display mode of operation and the Seroll Window

which econtrol the

configuration.

Function Hex +Dec —Dec Monitor Registers
Addr Addr Addr Label Destroyed
Clear HIRES graphics mode. & TFB3I3 6430017 -1229 A
Set display area primary. & TFB36 6431% -1226 A
Set TEXT mode. & TFB39 64313 -1223 SETTXT A
Load @ into A-rep for WNDTOP, & FB3C 64316 -1220 A
branch to SETWND below.
Set Graphics mode. & TB4Y 6432¢0 -1216 SETGR A,Y
Set mixed graphics/text mode. & TFBR43 64323 -1213 ALY
Call CLRTOP to clear graphies. & FBAG6 64326 -121¢Q ALY
Load 2¢ (514) into A-teg for set & FB49 64329 -1207 A
of WNDTOP. Fall into SETWND.
Set top line of window (WNDTOP) FB4B 64331 =12(315 SETWND A
from A-reg, § or 20 or user set.
Fall thru following.
Load A-reg with ¢ for WNDLFT. & FB4D 64333 -1203 A
Store A-reg to WNDLFT. & FBR4F 64335 -12(01 A
Load A-reg with 4% for WNDWDTH. & FBS1 64337 -1199 A
Store A-reg to WNDWDTH. & FB53 64339 -1197 A
Load A-reg with 24 for WNDBTM. & FB55 64341 -1195 A
Store A-reg to WNDETM. & TFB57 64343 -1193 A
Load A-reg with 23 for VTAB. & TFB59 64345 -1191 A
Store A-reg to CV. & FESB 64347 -1189 TABV A

Jump to VTAB - set BASL,H RTS.

34 MONITORS PEELED

rYyTTYTTTTN

TT~N

T

reTTrryrrTrrYTYTTTTTMT

B R B EEEENEEEEEEEEEEEE R

Function Hex +Dec -Tlee Monitor Registers
Addr Addr Addr Label Destroved
Toad Y-reg with SFF for INVFLG. FESL 65156 3800 SETNORM Y
Fall inte SETIFLG.
Load Y-rep with $3F for INVFLG. FES¢ #5152 -384 SETINV i
BR to SETIFLG.
Store Y-reg in INVFLG and RTS. FEE&6 65158 -378 SETIFLG none
SKFF white on black (from SETNORM)
$3F black on white {(from SETINV)
57F flashing (characters from user call with upper 2 bits of (1)
Set CSWL,H to point to COUTI. FE93 65171 =365 SETVID ALHLY
CH 36 524 WHDLFT 32 520
(Y A7 §25 WNDWDTH 33 521
TNVFLG 5S¢ 432 WNDTOP 34 $22
BASL, H Lf=41 528-29 WNDRTM 35 23
CSWL, I 54-55 $36-37

SCREEN FORMAT CONTROL

BY POKE/STORE

In many cases,

the routine in the Monitor described on the previous

page exists hecause the Monitor itself uses the function described.
Hften, calling the Monitor for a specific control funetion is doing it

the hard way.

This tahle indicates other ways of accomplishing the

same vesults.
Funetfon tethod
Set GRAPHICS display mode. POKE -163¢4,6 or STA C@5@
Set TEXT display mode. POKE -163@3,9 or STA C@51
S5et GRAPHICS mode to full screemn. POKE -16302,8 or STA CBS52
Set MIXED GRAPHICS and TEXT mode. POKE -163¢1,¢ or STA C@53
Set display to Primary Area. POKE -1630@,0 or STA C@54
Set display to Secondary Area. POKE -16299,¢0 or STA C@55
Clear HIRES/Set LORES for graphics. POKE -16298,0 or STA C@56
Set HIRES Graphics mode. POKE -16297,% or STA C@57
Set top line of Scroll Window. POKE 34, line-number (@#-23)
Bottom must be greater than top.
Set left edge of Scroll Window. POKE 32,column—number (#-39)
Left edge + width not to exceed 4.
S0t width of Seroll Window. POKE 33, number—of=-columns (1-4{¢),
Left edge + width not to exceed 40,
Set bhottom line of Scroll Window. POKF 35,line-number (1-24)
Bottom must be greater than top.
Set Mormal (white on black) text. POKE 53,255 or store SFF in $32
Sot Flashing text. POKE 53,127 or store 57F in 532
Set Inverse {(black on white) text. POKE 5%,63 or store $3F in §$32

KEYBOARD INPUT AND SCREEN OUTPUT 35

If the above means are used to change the Scroll Window configuration,
the user program should also take steps to insure that the cursor has
a valid position within the window (CV, CH, BASL,H). CALL -936 will
place the cursor in the Window.

Funetion Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Clear from line (CV) col (CH) to FC42 64578 -958 CLREOP A,Y
end of Scroll Window.

T T™MN

5CH5¢ and $CPS1 control Text mode vs. all or some graphics. The other Clear from line (CV) col (Y) to FC44 64580 -956 ALY
items regarding HIRES or LORES or full or part screen graphics may he end of 5cr0%1 Window.

established first, but will not be apparent until SCP5¢ is tickled. Clear from 1;?GNFA3 col (Y) to FC46 64582 =954 CLEOPL ALY
Likewise, 3C@51 will bring back Text Mode regardl £ the end of Sero indow.]
sattings. £ § et Tenrns Reent e of “tartier Clear Scroll Window to blanks, FC58 6460 -936 HOME ALY

set cursor to top left corner
of the window.

SCROLL WINDOW DATA MANIPULATIONS Set Ci=@, Cv=(A), clear to EOP FCSA 64602 -934 A,Y
(end of page = end of window).
This table describes three types of Scroll Window data manipulation Clear window from line (A) to FC5C 646g4 -932 AT

blank, set cursor to left end of
line (CV).
Clear line from cursor FCI9C 64668 -868 CLREOL A,Y
((BASL),(CH)).
Clear line from cursor (BASL),Y. FC9E 64670 -866 CLEOLZ AY
ALY

entry points. The first is tonitor label ESC1, the Escape Key
Processor, hecause it transfers control to a number of the other entry
points depending upon the A-repg contents and Carry being set. One
entry point of the Autostart Monitor is included because it handles
one requirement of ESC1 - that Carry he set.

"TEEEEEEE E E E R R R R R R R R

Set character in A-reg from FCA 64672 -864 CLEOL2 s
The second part of the table is a list of entry points supporting 3 cursor (BASL),Y to FEOLine.
clearing or setting parts of the screen to a particular value. 1 tlear line {BASL), then set FC95 64661 -875 SCRL3 ALY
BASL,H from CV and WNDLFT.
The third part of the table describes points causing conditional or Clear line from cursor (BASL),Y, FC97 64663 -873 ALY

unconditional scrolling of the window. then set BASL,H from CV & WNDLFT.

CH remains unchanged.

rFTvTr**TYTTITTT

ADDRESS TABLE

sera to A-reg for CH. & FC62 64610 -926 CR ALY
Store A-rep to CH. & TFChE 64612 =924 A,EY
Function Hex +hec -Dec tlonitor Repisters Increment CV. & FChE 64614 =922 LF ALY

Compare CV to WNDRTM. FCHB 6G46LAE -92(f A7
Set BASL,I; if (CV) < (WNDBTM),
do scroll if required.

Addr Addr Addr Label Destroyed

Call screen data manipulation. FC2C 64556 -98¢ ESC1 ALY
If Carrv is set and A-reg = ! Sernll the window, lines (CV) FC7¥ 64624 =912 SCROLL ALY
' goto HOME '; thru (WHDBTM).
A goto ADVANCE | Seroll the window, lines FC72 64626 -910Q i
B goto BS (A} through (WNDBTM).
C goto LF
D goto up

E goto CLREOL sngﬂgtdFi Monitor extended service
F goto CLREOP
other RTS to caller.

The RTS at the end of each of
these functions returns control

to the caller of ESCI.

Set Carry flag and JMP to ESCIL FB97 64407 -1129 ESCOLD A,Y
to handle Escape key functions
& By Gy Dy B OE.

Cl 36 524 WNDLFT 32 20
[37 §25 WHDWDTH 33 521
[NVEFLG 5¢1 8§32 YNDTOP 34 522
WAST., I 4i—41 528-29 WNDBTH 35 423

36 MONITORS PEELED KEYBOARD INPUT AND SCREEN OUTPUT 37

T FTTYTYYTrYTTTTMT

CURSOR POSITION CONTROL

In general, the Cursor is at the position indicated by the contents of
CV (line number relative to top of screen) and CH (column number
relative to to the left margin of the Scroll Window). The memory
location of the cursor is the sum of the contents of BASL,H (which
contains the address of the leftmost character of the line within the
Seroll Window) and the contents of CH. Normally, then, BASL,H contains
an address computed from the contents of CV and WNDLFT. However, if
either CV or WNDLFT is changed without recomputing BASL,H then the
different routines of the Monitor may come up with unpredictable (or

at least undesired) results.

ADDRESS TABLE

™"

Munetion Hex +Dec —Dec Monitor Registers
Addr Addr Addr Label Destroyed

tall screen/cursor manipulation. FC2C 64556 -98(1 EsCl A,Y
[f Carry is set and A-reg =
" goto HOME
A goto ADVANCE
B goto BS
. poto LF
D poto up
F poto CLREOL
I goto CLREOP
other RTS to caller.
The RTS at the end of each of
these functions returns control
to the caller of ESCI.

In the following table, the description includes indication of which
of the cursor address fields is heing used for what. Note, for
example, that at $FC95 the line indicated by BASL,H is cleared, and
then BASL,H is recomputed from CV, WNDLFT for future references.

Ty T TTYT

AN R E R R R E R R R R R R R R R R R R

The ESCl and YIDOUT routines are included in the table because they Set Carry flag and JMP to ESCI1 FBO7 644017 -1129 ESCOLD ALY
can be made to use (goto) the other entry points by passing them the to handle Escape key functions Autostart only
appropriate A-reg contents on entry. VIDOUT is the routine which Ay, By €, D, E; Fs

handles CR, backspace, and line feed when such characters are sent
through COUT1 (generally thru COUT). FESCl is the routine called to
accomplish the desired function when the keyboard routines are
operating in ESCAPE key mode. Thus, it has four way cursor movement
capability, as well as the capability of clearing the Scroll Window
from cursor present position to end of current line or end of the
Scroll Window, or of clearing the entire Scroll Window and placing the
cursor at the top left corner of it. The function performed depends

Place character in screen memory FBFD 64519 -1¢27 VIDOUT ALY
or process control character.

[t (A) > 89F or < $B¢ goto STOADV.

[f (A) = 88D poto CR.

If (A) = 58A goto LF.

1T (A) 588 poto BS.

11 (A) = 587 sound "bell".

1

upon the contents of the A-reg at entry, and the "set" condition of If (A) = other ignore it; RTS
the Carry processor status bit.
Clear Seroll Window, set cursor te TFO58 646EF -936 HOME ALY
Entry point ESCOLD of the Autostart Monitor is included in the table top left corner of the window.
due to its relationship to ESCI. Set =@, C¥=(A), clear to EOP FCS5A RAGHP2 =934 A, Y
tend of page = end of window).
The next group of points contains those which clear data on the screen Clear window from line (A} to FC5C 646(4 -932 ALY
as well as move the cursor. hlank, set cursor to left end of
line (CV).
The third group is entry points supporting movement of the cursor Clear line (BASL), then set FC95 64661 =875 S5CRL3 ALY
relative to its current position. BASLL I from CV and WKDLFT.
GClear Hne from cursor (BASL),Y, FC97 64663 -873 Ly X

The fourth group supports positioning the cursor at a desired location
without reference to its current position. To do this, the program

should set CV and CH and then call VTAB to set BASL,IW.

then set BASLLH from CV & WNDLFT.

Lowd Y from CH. & FEFY 64496 —1@4¢0 STOADV ALY
Slore A-rep to sereen at (EASL),Y & FEF2 64498 -1%38 A
Inerement CH. & FBF4 645000 —1@36 ADVANCE A
Compare (CHY with (WHDWDTH) & FEF6 64502 -1¢134 A
poto GROI0 CH not less.
Elae return (RTS).
tlove cursor left one column, to FCl1 64528 -10¢8 BS Y
right end of previous line if
requlred and (CV) < (UNDTOP).

FYyryYyTyrymrTwryTTTm®TTTTMNM™

38 MONITORS PEELED

T

KEYBOARD INPUT AND SCREEN OUTPUT 39

+Dec
Addr

Hex
Addr

Function

=Dec
Addr

Monitor
Label

Registers
Destroyed

Move cursor up one line FClA 64538
if (CV) < (WNDTOP).
Zero to A-reg for CH. &
Store A-reg to CH.
Increment CV. &
Compare CV to WNDBTM.

If CV not less decrement

do scroll.

If CV less goto VTABZ to set

BASL,H and return.

FCoH2
FCh4
FCHO
FC68

64610
64612
64614
“H4616

=g}

CV and

Place cursor at line (A) col (CH) FBSB 64347
(store A to CV and set BASL,H
by JMP to VTAB).

Set BASL,H from CV and WNDLFT
by call BASCALC and add WNDLFT.

Set BASL,H from A-reg and WNDLFT
by call BASCALC and add WNDLFT.

Set BASL,H to memory address for
left character of line in A-reg

(not left character of window).

FC22 64546

FC24 64548

FBC1 64449

FDED
FDF@

65095
6508

Jump via CSWL, character print.
Character print to screen output
routine entry - normal for CSWL.
Print character to screen with
appropriate actions on controls
and control characters.
If (A)<SAP goto COUTZ, bypass
inverse video mask.

-998
-926
-924

-922
-929

-1189

-99¢
-388

-1¢87

=531
-528

up

CR

LF

TABV

VTAB

VTARZ

BASCALC

CcouT
couTl

A

A,7Y
A, 7Y
A, 7Y
A, 7Y

TA
A

AUTOSTART MONITOR ONLY

Print character to screen via

VIDWAIT (pause if operator request)
and VIDOUT with save and restore
of A reg and Y reg.

FDF6 65014

=522

CouTZ

none

OLD MONITOR ONLY

Print character to screen via
VIDOUT with save and restore
of A reg and Y reg.

FDF 6 65@14

=522

couTz

none

WNDLFT 32
WNDWDTH 33
WNDTOP 34
WNDBTM 35

CH 36
cv 37
INVFLG 5@
BASL,H 4@-41

824
$25
3§32
528-29

40 MONITORS PEELED

$20
321
522
523

™ M MO O OrT W O O T Mmoo T T FTOT T T

GENERAL TEXT TO THE SCREEN

The preferred method of sending text
character desired into the A-reg and
there. The reason this is preferred is that if you want to send the
output to some device other than the screen, you can change CSWL,H

to point at the program supporting such other device. There are
times, however, when you’ll want to write to the screen regardless of
the setting of CSWL,H. COUTI is the entry point for screen-only
output, where reverse video display or flashing characters are set
using INVFLG. Entry at this point for the Autostart Monitor also
nllows you to stop output, using the control-S key.

to the screen is by loading the
calling COUT to handle it from

CouTz, may
character

be used for output to the screen without modifying the

by using INVFLG. That is, calling COUTZ with a character in
the A-reg will place that character on the screen as is, without using
[NVFLG to display the character in inverse video or flashing mode. In
the Autostart Monitor, entry at COUTZ is still early enough to handle

control-S entry, stopping the system if the character being written is
a4 Carriage Return while the keyboard buffer contains a control-S.

VIDOUT is the routine which interprets the character and places it on
the screen if it is not a control character. If the VIDOUT routine is
to he called directly (to bypass control-8S handling in the Autostart
Monitor, for example), then the calling program must save the A-reg
and Y-reg before and restore the A-reg and Y-reg after, because they
are both destroyed in the VIDOUT routine.

Ontput to the screen may be written via these alternate entry points.
However, note that the Monitor will still use COUT for the keyboard
{nput echo function, temporarily setting INVFLG to $FF for white on
hlack for each character echoed.

Following are addresses of the above mentioned locations, and a few
other entry points which will output the specified character(s) (via
COHT) without the calling program having to load them into the A-reg
hefore the call.

ADDRESS TABLE

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroved

Print a byte to specified output FDED 65@¢5 =531 COUT none
device by JMP (CSWL), normally

COUT1 for screen.
Character print to screen output FDF@® 6548 =528 COUTIL none
rout ine entry = normal for CSWL.

Print character to screen with

appropriate actions on controls

amnd control characters.

If (A)<S5A goto COUTZ, bypass

inverse video mask.

AMD (A} with INVFLG. & FDF4 6512 =524 TA

KEYBOARD INPUT AND SCREEN OUTPUT 41

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroved
Frint a byte to the screen. FDFA 6514 =522 COUTZ no ne

See AUTOSTART and OLD differences
toward end of this tahle.
Pracess char. in A-reg to screen. FRFD
If control character, do control.
If display character, store in
screen refresh memory.
Store A-reg to screen at FRF§
{BASL,H),{CH), then increment
CH and goto CR if window exceeded.
Store A-rep to screen at (BASL,N),Y FBF2
then inc CH and goto CR if window
exceeded.
Increment CH and poto CR if window FRF4
exceeded.
Test CH. Goto CR if CH => WNIDWDTH. FBF6
Tf A=$8D, $8A, $88, or $87 do it: FCp4
$8D carriape return goto CR
584 line feed goto LF
588 hack space poto BS
587 hell sound "hell"
Set INVFLC to $3F = inverse video. FRE{
Set INVFLG to $FF = normal video. FER4

645(9 -1¢27 VIDOUT A,Y

64496 =1(140 STOADV ALY

64498 -=1(38 A

64500 =1{36 ADVANCE A

645H2
64516

-1034 A
-1p2¢ A

65152 =384
5156 =386

SETIMNV i &
SETHORM Y

Set INVFLG from Y-reg. FE&6 65158 =378 SETIFLG none
AUTOSTART MONTTOR ONLY
Print character to screen via FDFA 65@14 =522 COUTZ none
VIDWAIT {(stop if operator reauest)
and VIMOUT with save and restore
of A and ¥ regs.
Test for operator pause reguest. FR7A 64376 =116(0 VIDWAIT Y

If (A)=58D (carriage return), and
iF keyboard register is full, and
if kevboard reg contains entl-S,
then fall into KBEDWATIT.

Flse, goto VIDOUT.

Pause system per operator request. FRAS

Loop until new key pressed.

If next key pressed is entl-C
then poto VIDOUT, leaving cntl-C
in kevhoard repgister.

Flse, clear kevhoard strobe and
goto VIDOUT,

(4392 =1144 EBDWAIT Y

OLD HOMITOR ONLY

Print character to screen via FDF 6
VIDOUOT with save and restore of

A=reg and Y-rep.

ASM14 =522 COUTZ none

CH 3f S24 UNDLFT 32 529
oy 37 825 WHIWITYTH 33 821
INVFLG 54 532 W NTOR 34 522
BASL,TI 4=41 528-29 WHDBTHM 35 823

42 MONITORS PEELED

Ty ryTTYTYTTTTT"N

T T TTTIYTYTYTYTTTTMmMMW

EEEEEEE EE E E E N T R N E R

e e e o e . e = — —— — . — — . — - —

CONTROL CHARACTERS

Mot e:

The following control characters have special meanings for screen
display.

580 Carriage Return
In the Autostart Monitor, the COUTZ routine calls (JSR) VIDWAIT,
which handles the control-S function before jumping to VIDOUT.
The COUTZ routine in the 01d Monitor calls VIDOUT.

When the VIDWAIT routine determines that the character being

"written'" is a Carriage Return, it then tests the keyboard input
buffer for a control-S. If so, it clears the keyboard hardware for

another entry and loops until another key is pressed. If this
entry is other than a control-C, the keyboard strobe is cleared.
Otherwise the keyboard is left filled with the control-C for the
calling program to detect and handle. Then VIDWAIT JMP's to
VIDOUT.

SHA Line Feed

The cursor is moved down one line unless this would put it on a
line below the Seroll Window. In that case, the contents of the
Seroll Window are moved up one line, and the cursor stays on the
current screen line.

SHYE Backspace
The VIDOUT routine moves the cursor to the left one space by
decrementing CH. If CH goes negative it is set to (WNDWDTH)-1 and
¥V is decremented. If decrementing CV would take it above (WNDTOP)
GV is not decremented. HNegative scroll is not supported.

ShY Sound the Bell
The speaker is pulsed 1(@f times per second for omne tenth of a

second.

Anvy other character in the range 3%8@ thru $9F is dropped.
not cause cursor motion or memory modification.

OUTPUT WITHOUT THE SCROLL WINDOW

It all or part of the screen is to be used in a direct addressing
manner, it is necessary to avoid certain Monitor services. In general,
the Seroll Window services provided by the Monitor are:

It does

I. Seroll all text in the window up one line if a carriage return
or line feed takes the cursor down through the bottom line of
the window.

2 Aitomatieally assume carrviage return if window width is
l'.".t'l'i'(ll'l'i.

KEYBOARD INPUT AND SCREEN QUTPUT 43

3. Place the cursor at the left edge of the Scroll Window instead
of at the left edge of the screen on a carriage return.

4. Support screen clear functions:
A. Clear the window, place cursor at top left corner.
B. Clear the window from current cursor position.
C. Clear line to the right of cursor position.

When using all or part of the screen as a random access display, these
automatic services need be avoided.

If the full screen is to be used as a random access display, without a
portion being used as a working Scroll Window, the problem is not too
difficult. Consider leaving the whole screen defined as the Scroll
Window.

1. The scroll operation only occurs if a carriage return or line
feed or exceeding window width occurs on the bottom line of the
Scroll Window. Avoid this by not having the program output CR or
LF or excessive data on the bottom line of the screen, and by
keeping the cursor away from the bottom line of the screen
during keyboard input operations.

2. The full screen is defined as the Seroll Window by the Monitor
when the RESET key is pressed. A user program can restore the

window parameters to this configuration if they have heen
altered by calling "Set Normal Scroll Window" at S$FB3C or 64316
or —-122¢.

3. Position the cursor where desired before printing a string of
characters: POKE the line number into CV and call VTAB for the
line and then POKE the character number into CH.

4, Output the string of characters by the same means as if operating
with scroll services, being careful not to unintentionally
exceed window width or output carriage returns. Depending on
your screen design, however, you may intentionally do each of
these.

Note that program output of a carriage return does not clear the line
to the right of the carriage return, but keyboard input of a carriage

return does (if reading the keyboard is being done by the Monitor pget-—
line routines).

If part of the screen is to be allocated as an operating Scroll Window
while the remainder of the screen is to be directly addressed, then a
different (lower) level of Monitor services must be called upon.

One way to support a divided screen is by using the Scroll Window for
data input with the Monitor get—input—line services, and by using the
Seroll Window support for whatever output the program intends to put
there. Then use parts of LOBRES graphics support for placing characters
on the screen outside of the Scroll Window, as described below. The

44 MONITORS PEELED

nmEeTNFTTFPFY YT TP YRR PPy TR YW

BEEEREEEEEEEEE R R R E E EE

;A . L a8 D]] il i] o sl) ——] ‘sl A i) 2}

alm here is to leave support of cursor position (zero page fields CV,
CHl, and BASL,H} up to the Monitor, and use other methods/fields for
placing characters outside the Scroll Window.

To place characters outside the Seroll Window,

1. With the line number in the A-reg, call GBASCALC to set GBASL,H
Lo point to the memory address of the left character position of
the indicated screen line.

2. With Y-reg indicating horizontal position on the line, store the
desired character at {(CBASL),Y.

Hote that this technique does not interfere with LORES plotting if the

sereen is being used in mixed mode, because PLOT calls always set
GRASL,H as required without regard to possible previous contents.

Another approach is available for the BASIC or APPLESOFT programmer.
Apain, the Scroll Window support can be used for some things, while
the following approach can be used to place characters on the screen
outside of the window. That approach is to compute the sereen memory
location for each byte to the screen, and poke the byte there. A
varfation on that approach is shown by the sample program. In the
sample, the Monitor VTAB routine is used to assist in building a table
of memory locations indicating the starting points of the screen
lines. This is an easier alternative than using the modulo arithmetic
formula deseribed in the section '"Pages Four thru Fleven". Note that
adding 1824 to each value in the table gives the memory address for
that line in the secondary display area.

ADDRESS TABLE

Funetiaon Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

OUTSTDRE OF SCROLL WINDOW

Compute memory address for line in F847 63559 -1977 GBASCALC A

A-reg; set GBASL,H,

IS TDE SCROLI, WINDOW

Write byte in A-rep to screen at FDF@ 65¢¢8 -528 COUTL A

cursor (CV),(CH) using INVFLG and

:.'l||\'|J!}I'1"iI11" CUrSOr ToOVe.

Write byte in A-reg to screen at FDF6 65014 =522 COUTZ none

(V) (CHY with cursor move hut

not INVILG.

Clear Seroll Window to blanks, FC58 646(40 -936 HOME ALY

cursor to top left corner.

Set OV from A-rep, clear window to FC5A 646(2 =934 ALY

end of window.

KEYBOARD INPUT AND SCREEN OUTPUT 45

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Place cursor at line (A) col (CH) FBSR 64347 -—11B9 TARV A
setting CV and BASL,H from A-reg.

Set BASL,H from CV (and WNDLFT). FC22 64546 =99¢ VTAB A

Set BASL,H from (A) and WNDLFT FC24 64548 -988 VTABZ A
without regard to CV.

Set BASL,H to left end of screen FBC1 64449 =1¢87 BASCALC A

line (not window line) in A-reg.

CH 36 524 WNDLFT 32 520

Ccv 37 525 WNDWDTH 33 521

GBASL,H 38-39 §26-27 WHDTOP 34 522

BASL, H 4f-41 $28-29 WNDBTM 35 523

INVFLG S $32

APPLESOFT SAMPLE PROGRAM

1¢ REM TEXT OUTPUT WITHOUT THE SCROLL WINDOW

11 REM SAMPLE PROGRAM

12 REM READS FROM KEYROARD LINE, CHAR, STRING

14 REM AND PLACES THE STRING THERE

13¢¢ REM PROGRAM ENTRY

161@ DIM L¥%(23): REM LINE ADDR TABLE

119¢ GOSUB 633¢d: RFM MAKE UP TABLE

1199 REM PRINT PART OF TABLE JUST FOR SHOW
12¢ FOR I = @@ TO 21: PRINT I,L%(I): NEXT

12¢9 REM DELAY TO ALLOW LOOK AT IT.
121§ FOR I = 1 TO 5@@@: NEXT

1226 PRINT: REM PRINT CR TO ALLOW CTL-S STOP IF DESIRED.
1225 CALL - 936: REM CLEAR SCREEN BEFORE CHANGING WINDOW.
1229 RFM SET UP NEW WINDOW.

123¢ POKE 32,24: POKE 33,14: POKE 34,12: POKE 35,17
1235 CALL =936: REM PUT CURSOR INTO WINDOW AREA.
13¢¢f INPUT LI,CL,SS3:REM READ A COMMAND LINE.

1399 REM ALLOW A WAY 0OUT

14G@ IF S8% = "END'" THEN 639(¢

150 SL = LEN (S§§)

15¢9 REM CHECK LEGALITY OF LINE, ETC.
151¢ IF LI > 23 THEN 181¢

1511 IF CL > 39 THEN 1814¢

1519 REM NOT PAST & THOUGH.

152¢¢ IF CL + SL > 39 THEN SL = 4¢ - CL

16¢d REM PUT CHARACTERS ONE AT A TIME.
1661 FOR I = 1 TO SL

17¢@ C€s = MID$ (S5%,1,1):C% = ASC {(C3)

172¢ POKE LZ(LI) + CL + I - 1,C% + 128

174 NEXT I

18 GOTO 13(¢: REM GO BACK FOR ANOTHER COMMAND.

46 MONITORS PEELED

M MO MM T WY M NN M T o M e A e W ™ N ™ W

BEEEEEEBEEBREEE R R EEE R EE

LH1e REM LINE OR CH TOO BIG — ERROR.
14811 CALL - 936: PRINT "NOT SO BIG"

1812 PRINT "LN ";LI: PRINT "“CH ";CL

182¢0 GOTO 180¢

(2999 REM

I AT REM MAKE UP LINE ADDRESS TABLE
HiWIY X% = PEEK (37): REM REMEMBER CV

OWI2 FOR T = ¢ TO 23

(43 POKE 37,T1: REM SET CV

G CALL —99(: REM CALL VTAR TO FILL BASL & BASH
LARYS LE(I) = 256 % (PEEK (41)) + PREEK (4()

DA NEXT T

a5 RFM TABLE SETUP DONE

(A4 6 REM RESTORE CV AND RETURMN

H30SE POKE 37,X%: CALL - 99@: REM WITH PROPER BASL & BASH
NG RETURN

WA CALL. - 1233: END: REM RESTORE FULL WINDOW PRIMARY

SECONDARY DISPLAY AREAS

The Apple IT hardware allows use of either of two memory areas for
display to the screen. The first, or primary, is memory locations
SWAWH-S@TFF. The secondary text {and low resolution graphics) display
is SHBEPF-SHBFF. This area is normally overlaid by a user program
but in special circumstances a user may desire to make use of
this secondary area as a screen display area.

A
or data,

The Monitor does not support the secondary display area as such.
I, the routines in the Monitor which determine screen area memory
address from line number (CV) and character column (CH) do so only for

the primary display area. These routines perform correctly only for
Ilnes (=23,

That

Following are descriptions of two ways of using the secondary display
AVen.

COPY PRIMARY TO SECONDARY

There are times when it is desirable to change the display wvery
quickly, although the program produces the output slowly. For example,
a propgram might display data found by scanning a disk file. The
programmer might generate the original screen data in the primary
display area, then move it to the secondary display area and set the
harduare to display from secondary. The program may then proceed to
penerate the next screen data in the primary area while the operator
[s looking at the initial or previous display of results. A sample
program is provided later in this section showing how the Monitor Move
routine can be used to move the contents of the primary display area
to the secondary display area.

KEYBOARD INPUT AND SCREEN OUTPUT 47

SET BASL,H FOR SECONDARY DISPLAY PAGE

When the Monitor places a character in the screen memory area, it does
so using BASL,H as the address of the memory location for the left end
of the line, and (CH) as the displacement from the left end of the
line. BASL,H can be initialized to the memory location of a selected
screen line by setting the desired line number in CV and then CALLing
TABV. On return from that CALL, adding 4 to BASH changes BASL,H to
point to memory for the desired line in the secondary display area.
This will last until the program writes a carriage return or writes
characters beyond the right end of the Scroll Window.

If the Monitor is called upon to read from the keyboard, it "echoes"
the input characters to the screen. Input of a carriage return, one
backspace too many, a cursor movement, or a screen clearing Escape
Key function will cause BASL,H to be restored by the Monitor to point
within the primary display area.

In the case where one display area is to be used for text and the
other for graphics, it is preferable to keep the graphics in the
primary area and the text in the secondary area because the Monitor
recomputes GBASL,H continually for plotting functions, whereas for
text output BASL,H is recomputed only when it is necessary to move the
cursor to a new line.

It must be noted that APPLESOFT also does not (easily) support the

secondary display area. AFPLESOFT in RAM occupies that part of memory,
and then some. Firmware APPLESOFT places the program code in that

memory space, unless special actions are taken. Those actions may be

noted in the sample program, which uses APPLESOFT and the secondary
display area. POKE 1@4,12 and 3%27,® hefore loading the program.

ADDRESS TABLE

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Place cursor at line (A), col (CH) FBSB 64347 -118%9 TABV A
(store A to CV and compute BASL,H

by JMP to VTAB.
Set BASL,H from CV and WNDLFT FC22 64546 -99Q VTAB A

by call BASCALC and add WNDLFT.
Set BASL,H from A-reg and WNDLFT FC24 64548 -988 VTARZ A

by call BASCALC and add WNDLFT.
Set BASL,H to memory address for FBC1 64449 =187 BASCALC A

left character of screen (not
window) of line in A-reg.

48 MONITORS PEELED

T T T T T ' ¥ T T W

'BEEEEEEEEEEEEEER"

T ¥y ¥y rYyrvywyvywrvTmm

Munetion Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed
Write byte in A-reg to screen at FDF@ 65088 -528 COUTL ?A
cursor (CV),(CH) using INVFLG and
supporting cursor move.
Write byte in A-reg to screen at FDF6 65@14 =522 COUTZ none
(CV¥),(CH) with cursor move but
not INVFLG.
Monitor Command Processor MOVE FE2C 6568 -468 MOVE A (Y=0)
routine. (AIL,H) thru (A2L,H) is
moved to (A4L,H) thru whatever.
Monitor Command Processor GO entry. FEB6 65206 -33¢ GO AVX,Y,P
Set PCL,H from AlL,H if entered. &
Call RESTORE, set all regs but § & FEB9 652¢9 -327
JMP via PCL,H. FEBC 65212 =324

DIRECT CONTROL ADDRESSES

The following table describes the methods of setting the hardware for
display to various screen configurations by direct control rather than

by calling the Monitor. For some of these items there is no routine
in the Monitor which could be called to perform the function.

l'unction Method

Set GRAPHICS display mode.

Set TEXT display mode.

Set Graphics mode to Full Screen.
S0t MIXED GRAPHICS and TEXT mode.
Seb display to Primary Page.

Set display to Secondary Page.
tlear HIRES = Set LORES mode.

Set HIRES Graphics mode.

S¢t top line of Scroll Window.

POKE -163¢4,8 or STA C@5(

POKE -163¢3,0 or STA C@51

POKE -163¢2,8 or STA C@52

POKE -163¢1,8 or STA C@53

POKE -1630¢@,8 or STA C@54

POKE -16299,8 or STA C@55

POKE -16298,¢ or STA CP56

POKE -16297,8 or STA C@57

POKE 34,line-number (#-23)

Bottom must be greater than top.
POKE 32,column—-number (#-39)

Left edge + width not to exceed 4.
POKE 33,number—of-columns (1-4),
Left edge + width not to exceed 4{.

Set left edge of Scroll Window.

Set width of Scroll Window.

Set bottom line of Scroll Window. POKE 35,line-number (1-24)
Bottom must be greater than top.

H] 36 524 WNDLFT 32 524

(Y 37 $§25 WNDWDTH 33 §21

GBASL, N 38-39 s826-27 WNDTOP 34 522

BASL,H Aip-41 528-29 WNDBTM 35 $23

THVILG 5S¢ $32

KEYBOARD INPUT AND SCREEN QUTPUT 49

INTEGER BASIC SAMPLE PROGRAM

19
11

19

24
2]
22
23

25
26

27

28
29

16
1¢d1

11¢¢

1204
1216

1309

1404
1410
1 5¢¢
16¢¢
1760
1800

32000

32¢¢1
32¢92

320083

REM SAMPLE SECONDARY DISPLAY WAY
REM USING MONITOR MOVE TECHNIQUE

GOTO 19¢¢: REM BYPASS SUBROUTINES
REM MOVE AREA 1 TO AREA 2
POKE 6@,f: POKE 61,4: REM SET AlL,H

POKE 62,255: POKE 63,7: REM SET AZL,H
POKE 66,@: POKE 67,8: REM SET A4L,H

POKE 71,0: REM SET Y-REG={
POKE 58, 44: REM $2C
POKE 59,254: REM SFF
CALL —327: REM DO TIHE MOVE
RETURN

REM PROGRAM START
IF PEEK (75)<12 THEN 32¢¢(

CALL -936: REM CLEAR THE SCREEN

PRINT "THIS 1S THE SECONDARY DISPLAY AREA"
PRINT "NOTE THE LACK OF CURSOR"

GOSUB 2 REM MOVE TO SECONDARY
CALL -936: REM CLEAR PRIMARY AGAIN
PRINT "THIS IS THE PRIMARY AREA ACAIN"

POKE -16299,0: REM SET SECONDARY
FOR I=1 TO A4Q@@: NEXT I
POKE -163¢¢,@: REM BACK TO PRIMARY

END

REM NO LOMEM ERROR

PRINT "PLEASE LOAD AGAIN"
PRINT "AFTER LOMEM:3§72 "

END

APPLESOFT SAMPLE PROGRAM

19
11
12
13
14

1@¢y

1899
1914

1¢52¢

REM SECONDARY DISPLAY AREA WAYS AND MEANS
REM SAMPLE PROGRAM

REM READS FROM KEYBOARD

REM COMMAND, LINE, CHARACTER, STRING

REM AND PLACES THE STRING

REM PROGRAIM ENTRY

REM IS SECONDARY AREA CLEAR?
IF PEEK (1¢4) < 12 THEN 62(¢¢

GOSUR 630(- REM CLEAR THE SECONDARY

50 MONITORS PEELED

™T"

A A = s . . T, T, . B S, o

SE—

EEEEEEEER:

B EEEBEEEBEEEEBEEERER

(eI LT]
139
131
1311
1312

L3194
1 44844
LA1
142
1467344
14731
LA4H
14 5¢
1 Sh
1514
1511
152
1594
| AL
16144
162¢
1 7hes
1714
[B
1814
1811
1H12
[H2

2y
21

21
211

2206
ER11]

REM M A I N
IF Q = (¢ THEN 139(@:

POKE 37,21:
CALL - 999:
POKE 41, PEEK (41) + 4:

INPUT CC$,LI,CL,SSS

PROGRAHM

REM INPUT TO PRIMARY

REM SET INPUT TO SECONDARY
REM SET LINE 21

REM SET BASL,H

REM SET BASH TO SECONDARY

IF CC§ = "END" THEN 639¢@

IF CCS = 8" THEN 2¢¢{:
IF cCs = "p" THEN 21¢¢:
IF cC$ = '"Q" THEN 2201¢f:
IF CC$ = "R" THEN 23¢{:
IF CcC$ = "X" THEN 15(¢:

REM SET SHOW TO SECONDARY AREA
REM SET SHOW TO PRIMARY AREA
REM SET INPUT SECONDARY

REM SET INPUT PRIMARY

REM PUT STRING TO SECONDARY

POKE 1630¢,0: PRINT "WHAT? ": GOTO 13¢¢)

SL = LEN (S5%)
I[F LT > 23 THEN 181@
IF CIL, > 39 THER 181¢

[F CL + SL > 39 THEN SL

CX = PEEK (37):

= 4 — CL: REM NO AUTO CR
REM REMEMBER CV

POKE 37,LT: CALL = 99(}: POKE 41, PEEK (41) + 4

POKE 37,CX:

POKE 36,CL:

SP$ = LEFTS (55%,S5L):
PRINT SP$

COTO 13¢¢
CALL = 936:

PRINT "NOT S0 BIG":

REM RESTORE CV
REM SET CH FOR THIS PRINT
REM SHORTEN PRINT IN THIS SMPL

REM VALUE TOO LARGE.
REM PRINT IN PRIMARY ONLY

PRINT "LN ";LI: PRINT "CH ";CL

GOTO 13¢@

POKE - 16299,
COTO 13§

POKE = 163¢¢,0:
GOTO 13¢5

(0 = 1: GOTO 13¢4:
() = (h: GOTO 13¢d:

REM SET SECONDARY

REM SET PRIMARY

REM SET IKPUT TO SECONDARY
REM SET INPUT TO PRIMARY

KEYBOARD INPUT AND SCREEN OUTPUT

51

6204¢
62010
620318
62019
62029

63009
63001
63005
63¢1¢
63020
63¢3¢
63340
6305¢
63060
6307¢
63080¢
639G

PRINT "SETUP NOT MADE, NOW BEING DONE"

PRINT "RUN THE PROGRAM AGAIN"

REM 1@#4 IS APPLESOFT ROM START
RFM BYTE BEFORE $C@1 MUST BE ZERO

POKE 3¢72,@: POKE 1¢4,12: END

BL$ " ",

FOR

CX = PEEK (37)

FOR T = ¢ TO 23

POKE 37,1: CALL - 99¢
POKE 41, PEEK (41) + 4
POKE 36,0

PRINT BLS

NEXT

POKE 37,CX: POKE 36,0
RETURN

POKE 163¢¢,6: CALL - 1233: END

52 MONITORS PEELED

= : REM CLEAR SECONDARY AREA
I =1 TO0 3:BLS$ = BL$ + BLS$: NEXT

T M

nAFAFMFTF AT PP TMMTY TR Y TTFOT

CHAPTER 3

INTERRUPT PROCESSING

Some computers are capable of reacting to the raising (or dropping) of
A signal line by instantly saving the current status of the processor,
and quickly transferring control to some other program within the
computer. Changing the state of that line is called "causing an
interrupt™. The functions of the processor in saving its current state
and transferring control to some other location in memory is called
"takinpg an interrupt”., The program which then receives control is
cupected to "handle the interrupt".

The 6592 microprocessor in the Apple 1T is sensitive to three

tnterrupt categories. These are RESET, NMI (Non—Maskahle Interrupt),
and [RQ. FExecution of a BRK instruction causes a form of IRQ interrupt
to be simulated.

The purpose of an interrupt, in general, is to allow some kind of
external device to make a condition known to a rumning program without
the program having to periodically or continually test for the

hnrdware condition. An example of the latter type of operation is the
Apple T1 keyboard operation. When keyboard input is to be accepted

menory location SCPPP is tested repeatedly until presence of the sign
hit indicates that a key has been pressed. An example of interrupt
driven processing could be a special peripheral controller card,
nttached to a telephone line, which caused the computer to be taken
over hy a data acquisition program any time data was available, but
would allow the machine to be used for other things in between
tranemissions.

When a computer recognizes (takes) an interrupt, the hardware should
accomplish three things.

l. BSave processor status in such a way that execution of the
interrupted program can be continued after the interrupt has
been "serviced" or handled.

2. Prevent further recognition of that class of interrupts until
the interrupt handling program restores that interruptability.

V. Transfer control to the program meant to handle this type or
catepory of interrupt.

With the 65@2 in the Apple IIL variatfons on the above three steps are
taken for the three different interrupt classes or categories.
I. When an TRG (or BRK) or NMI interrupt is taken, the contents of

the program counter and the P-reg {(processor status register)
are respectively pushed onto the stack. When a RESET interrupt
is taken, the processor holds the memory in READ mode until
control is transferred to the handler, so nothing of processor
status is pushed onto the stack.

INTERRUPT PROCESSING 53

2. When the 65@2 takes an IRQ interrupt, the P-reg is modified. Tt
a BRK instruction is executed, the $1@ bit of the processor
status register is set to one before the P-reg is pushed onto
the stack. If the IRQ line was the cause of the interrupt, this
bit is set to zero before the P-reg is pushed onto the stack.

After the P-reg is pushed onte the stack, the $@f4 bit is set to
inhibit recognition of any more IR(category interrupts until
the interrupt handling program clears this condition.

With RESET and NMI there is no available facility for
preventing another interrupt while the current interrupt is
being handled.

3. The 65@2 transfers control to the appropriate program for
handling an interrupt by means of 'wvectors'. Memory addresses
$FFFA-SFFFF are reserved for this purpose. The final step of
taking an interrupt is loading of the program counter from the

vector for this class or category of interrupt. The following
table indicates the locations of the interrupt handlers for the

two Monitors.

Interrupt Vector Monitor 0ld Monitor Autostart
Taken Address Lahel Address Address
NMIL SFFFA-B "NMI™ SP3FB SA3FB
RESET SFFFC-D RESET SFF59 SFAG2
IRQ/BREK SFFFE-F IRQ SFABH SFALH

NMI INTERRUPT

The Apple II Monitor does not interfere with user handling of
the NWMI interrupt. That is, the vector for NMI causes the 65@2
to transfer control of the computer to location $@3FB, where
the user is to place a JMP to the user—-provided handler for
this type of interrupt.

RESET INTERRUPT SUPPORT

Pressing the RESET key on the keybeard causes a RESET interrupt
to occur. (m all Apple II's but the very early ones, power-on
also results In generation of a RESET interrupt.

The actions performed by the Autostart Monitor and the 0ld

Monitor RESET interrupt handlers are considerably different.
Therefore, they will be described separately.

54 MONITORS PEELED

TN YTYTTTYTTTTTW

m T T O P

BEEEEEREER

A 88 sd e ss s s

"R

IRQ/BRK INTERRUPT HANDLING

When either an IRQ interrupt is taken or a BRK instruction is
executed, the 65#2 performs an interrupt sequence. The contents

of the program counter are pushed onto the stack. The 518 bit
of the P-rep is set or cleared to indicate the IR line wvs.

BRK instruction, and then it is pushed onto the stack. The 6502
then sets the $f4 bit of the P-reg, preventing another

interrupt of this type from being recognized until this one is
handled. The 6532 then loads the Program Counter from the IRQ
hardware prescribed vector at SFFFE-SFFFF, and allows operation
of the computer to continue from that point. The Interrupt
Handler for TRQ interrupts is now in control.

RESET INTERRUPT—OLD MONITOR

When a RESET interrupt is taken the 0ld Monitor establishes a
predefined configuration of hardware and page zero fields. Primarily,
the keyboard is set as the current input device, the secreen is set as
Lhe current output device, and the screen configuration is set to full
sereen Scroll Window with normal video.

Pape zero fields KSWL,H, CSWL,H are set to make the keyboard and
nercen active. WNDLFT, WNDWDTH, WNDTOP, WNDBTM are set to define the
whole screen as the Scroll Window. CV and CH are set to place the
cursor at the bottom left corner of the screen. INVFLG is set to
normal {white on black).

llardware addresses are referenced to establish a known configuration
an follows.

SCH56 = eclear high resolution graphics
S0#S4 — display primary area
SCPS1 — set text mode

toutrol is then transferved to the "top" of the Moniter at label MON,
location SFF65, at which point the "bell" is sounded and the Monitor
enters the command line read routine.

INTERRUPT PROCESSING 55

ADDRESS TABLE

Function Hex +Dec —Dec Monitor Registers
Addr Addr Addr Label Destroved

Set STATUS in SAVE area to (. & FB2F 643003 -1233 1INIT A
Clear HIRES. & FB33 6h43G7 -1229 A

Set primary display area. & FB36 643190 =1226 A
Set TEXT mode. & FB39 64313 -1223 SETTXT A
Set full screen scroll window by FB3C 64316 -122¢ A
branch to SETWND with (A)=@.
Set WNDTOP from A-reg. & FB4B 64331 -12(5 SETWND A
Load A with @ for WNDLFT. & FB4D 64333 =123 A

Set WNDLFT from A-reg. & FB4F 64335 -12¢1 A
Load A with 4§ for WNDWDTH. & FB51 64337 -1199 A

Set WNDWDTH from A-reg. & FB53 64339 -1197 A
Load A with 24 for WNDBTM. & FB55 64341 -1195 A

Set WNDBTM from A-reg. & FB57 64343 -1193 A
Load A with 23 for CV. & FB59 64345 -1191 A

Set CV from A-reg. & FB5B 64347 -=1189 TARV A
JMP to VTAB to set BASL,H & RTS. FB5D 64349 -1187 A

Set INVFLG to SFF = normal video. FE84 65156 =380 SETNORM Y

Set INVFLG from Y-reg. FEE6 65158 =378 SETIFLG none
Set port ¥ (keyboard) for input. FEB9 65161 =375 SETKBD A,X,Y
Set port ¢ (screen) for output. FFE93 65171 =365 SETVID A,X,Y
Monitor entry on RESET key pressed FF59 65369 -167 RESET

or Power on.

Call SETNORM - white on black. &

Call INIT -Text & full scroll. & FF5C 65372 ~-164

Call SETVID =~ screen as output. & FF5F 65375 -161

Call SETKBD ~ keyboard = input. & FF6Z2 65378 -158
Clear 65@2 decimal mode (set hex) & FF65 65381 -155 MON

Sound bell. & FF66 65382 =154
Monitor Command Processor Entry. FF69 65385 -151 MONZ

Set '"*" as prompt character.

RESET INTERRUPT—AUTOSTART MONITOR

The Autostart Monitor performs functions of three categories in
handling a RESET interrupt.

1. Establish a known hardware/software environment with repards to
the basic machine.

2. If the contents of memory (page three) do not indicate that a
power—on initialization has heen performed, the Autostart

Monitor will perform power—on initialization. If a disk
contvoller card is present in one of the slots, power—on

initialization includes bootstrapping from that slot. If no

disk controller card is in the machine a control-B entry is
simulated. 1In either case, the appropriate language processor

56 MONITORS PEELED

r* T YT TYTYTTT TN

Ty Ty Yy ¥y ryYyryryrryrryrmmTnmwT

TR R R R E R R R R R R R R R R Y

receives control at the end of power-on initialization, with
page three fields set to indicate that a warm start is to be
performed on ensuing interrupts from the RESET key.

1. If the contents of memory (page three) indicate that power—on
initialization has already been performed, the Autostart
Monitor will transfer control via the RESET (Soft Entrvy) vector
in page three at the conclusion of "handling'" the RESET
interrupt. If DOS has been booted, this will result in transfer
of control back to the current language processor through DOS.
If DOS is not present, the normal setting of the RESET vector
will cause simulation of a control-C (warm start) reentry into
the current language.

INITIALIZE SYSTEM CONFIGURATION

When a RESET interrupt is taken, the Autostart MMonitor estahlishes a
predefined configuration of hardware and page zero fields. Primarily,
the keyhoard is set as the current input device, the screen is set as
the current output device, and the screen configuration is set to full
sereen Scroll Window with normal video.

Pagpre zero fields KSWL,H, CSWL,H are set to make the keyboard and
WNDLFT, WNDWDTH, WNDTOP, WNDBTM are set to define the
whole sereen as the Scroll Window. CV and CH are set to place the
cursor at the bottom left corner of the screen. INVFLG is set to
nermal (white on black).

wereen active.

Hurdware addresses are referenced to establish a known configuration

an tollow.

GURSG = elear high resolution graphics
SePSh — display primary area

SCithl = set rext mode

SOBSH = clear ANG = TTL LD
SEAOA = clear AND = TTL LO

LOHSD - set ANZ = TTL HT
SOMLE - set AN3 = TTL HI
SUEEE = turn of f Fxpansion ROM
GEMERRY clear keyhoard strobe

tn completion of all the above, the Autostart Monitor sounds the BELL.

COLD/WARM DETERMINATION

Ater cstablishing a known basic hardware and software (screen
ot roln) covireonment, the Autostart Monitor executes a test to
determine whether power—on initialization is to be performed. Page

three locations S@3F2-583F3 contain the RESET (Soft Entry) vector, the
tov wWhich the Autostart Moniter will transfer control on
handling the RESKET interrupt. Location $H3F4 is a

il e

comp let Ton of

INTERRUPT PROCESSING 57

validation byte, used with $@3F3 to indicate whether or not power—on
Initialization is to be performed. If the Exclusive OR of the contents
of these two memory locations is S$A5, then power—on initialization is
considered to have been previously accomplished, and $@3F2-$@3F3 is
considered a valid address to which to transfer control.

POWER-ON INITIALIZATION

The first functions of power—on initialization are to estahblish in
page three ($@3FP-5¢3F4) the BRK interrupt vector (see "BRK
Instruction Handling - Autostart Monitor") and the RESET Soft Entry
interrupt vector with validation byte. The RESET wvector at this point
is set to SEPPP to simulate a control-B (initialize) entry for the
current language processor.

The Autostart Monitor next performs a routine which tests each slot,
from slot 7 through slot 1, for presence of a disk controller card.
If one is found, a jump is performed to CX@ where X is the slot

number in which the disk controller has been found. This will result
in loading of DOS and presumably execution of the HELLO program.

Note: DO0OS 3.2 Replaces the RESET vector at $@3F2-$@3F3 and validation

byte at $@3F4, so that on a RESET interrupt, control will be passed
through DOS back to the current language processor.

If no disk controller card is found the Autostart Monitor changes the
RESET vector to S$E@@3 (lanpuage restart or control-C entry point) and
then jumps to SE@@® (languape initialize entry point).

SYSTEM RESTART

If the $@3F3-S#3F4 test described above is passed, the RESET vector at
S@3IF2-503F3 is considered mostly valid. If it contains SE@@#F, it is
changed to $E@P3 and then BASIC is entered at SE@#{. TIf it is not
SE@P@, it executes an Indirect Jump via $#3F2-5(3F3 to the address
specified therein.

RESET VECTOR MODIFICATION BY USER

The RESET vector may be modified by user or program to send control to
some other address in the machine at the completion of Monitor
handling of the interrupt. For example, to cause the RESET key to
result in placing the machine in Monitor mode, execute the following
program;

1% POKE 1@1¢,1¢5

2§ POKE 1811,255

3¢ POKE 1@12,9¢

4% CALL -151: REM ENTER MONITOR
5@ END

58 MONITORS PEELED

T T T T T T T MM T T O " OO Y T T T T

e

SR

-
-
i:l
i:l
fl
;
;
f"
:
fl
n
P

The following program is more general purpose. In order to set the
RESET vector to some address, poke the address into locations 1¢1@-
TA11 (S¥3F2-SU3F3) and then CALL Autostart Monitor label SETPWRC
(51'BOF or 64367 or -1169) to set location 1$12 ($U3F4).

[REM AD IS ADDRESS OF

Il REM ROUTINE TO RECEIVE

|7 HEM CONTROL AFTER RESET

A POKE I@1@,AD: REM SET LO BYTE
WoPOKE 1¢11,AD/2563 REM SET HI
AW CALL =1169: REM SET 1¢12

Hote: If you try to run this on a system with an 014 Monitor ROM, vou
mny destroy the program, or even the entire diskette. To avoid this

problem, execute the steps in the above program manually, on a system
with an Autostart ROM. Then, PEEK location 1%#12 and get the value to

POKE into 1012, alleviating the need to CALL-1169 at all.

ADDRESS TABLE

Funet fon Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed
Monltor entry on RESET key pressed FA62 64§98 —1438 RESET
ar Power on.
CLL = clear 65@2 dec,(set hex). &
Call SETNORM - white on black. & FA63 64099 -1437
Call INIT = Text, full seroll. & FABE 6412 -1434
tall SETVID - screen as output. & FAGY 641¢5 -1431
Call SETERD = keyboard as input & FABC 6418 -1428
Inftialize hardware to known state. FAGF 64111 =1425 INITAN
Clear AN to TTL LO (ref. CP58). &
Clear AND to TTL LO (ref. C@5A). & FA72 64114 —=1422
Get ANZ to TTL HI (ref. C@5D). & FA7S 64117 -1419
Set AN to TTL HI (ref. C@SF). & FATB 641200 -1416
tClear Expansion ROM (ref. CFFF)}, & FATR 64123 -=1413
Clear keyboard strobe. & FATE 64126 -1410
Mlear 652 decimal mode (set hex).& FA81 64129 —=14¢7 NEWMON
tall BELL. & FAB2 64130 -1446
Toul S53Y vs. $3F4: Cold or Warm FABS 64133 -1403
11 Cold poto PWRUP.
LU Ca3IrE) XOR (83F4) = 3A5, Warm.
Teat SOFTEV (53F2) low byte: FABF 64143 -1393
Non=zera means Cold Start done -
ol NOVITX to use S0OFTEV vector.
Zera o means restart warm maybe.
Tewt SUFTEV Wi for $E@ - language FA94 64148 -1388
colbd wtart entry. If not equal,
SUETEY Lu ok to use, goto NOFIX.
SO SERRA, chanpe to SE@@E3 for FA9R 64155 -1381 FIXSEV

fature e and eoto SEQOD to eold
start the lanpuage.

INTERRUPT PROCESSING 59

Funetion Hex +Nec —llec Monitor Registers
Addr Addr Addr Label Destroyed

IRQ/BRK INTERRUPTS

IRQ/BRK INTERRUPT RECOGNITION

When either an IRQ interrupt is taken or a BRK instruction is executed
the 6532 performs an interrupt sequence. The contents of the program

counter are pushed onto the stack. The $1@ bit of the P-reg is set or
cleared in indication of IRQ line ws, BRK instruction, and then it is

pushed onto the stack. The 652 then sets the $@4 bit of P-reg,
preventing another interrupt of this type from being recognized until
this one is handled. The 65@2 then loads the Program Counter from the
[} hardware prescribed vector at SFFFE-5FFFF, and allows operation of

the computer to continue from that point. The Interrupt Handler for
[k interrupts is now in control,

JMP (SOFTEV): Use the Soft Fntry FAAT 64163 -1373 HNOFIX
vector to exit RESET handler.
Cold Start omn RESET entry point. FAAS 64166 -137¢0 PWRUP
Call APPLEII to clear screen and
put title on top line. &
Set page 3 interrupt vectors for FAA9 64169 -1367 SETPG3
BRK (OLDBRK) and SOFTEV (SE@Q@).
Look for disk controller card in FAR4 6418¢ -1356
slots 7 thru 1. If none, goto
FIXSEV above to set SOFTEV for
BASIC restart & enter BASIC cold.
If disk found, JMP (LOC{#) te bhoot
from the disk.

Clear screen (call HOME). & FB6Y 064352 -1184 APPLEILI A,Y

Place APPLE IT legend on top line. FB63 64355 -1181 A,Y IRQ INTERRUPT HANDLING

Set PWREDUP ($3F4) = ($3F3) XOR $AS FBOGF 64367 =1169 SETPWRC A

Set STATUS in SAVE area to {. & FB2F 643@3 -1233 INIT A The 60932 directing vector at SFFFE-SFFFF points to Monitor program

Clear HIRES. & FB33 643(7 -1229 A label TRO in both the 0ld Monitor and the Autostart Monitor. Tt will
Set primary display area. & FB36 64310 -1226 A he noted in the address table that the address is different, however.
Set TEXT mode. & FR39 64313 -1223 SETTHT A .

Set full screen scroll window by FBEIC 64316 -122¢ A The handling of an IRQ interrupt is identical in both Monitors. The
branch to SETWND with (A)=@. contents of the A-reg are stored at ACC ($45) for future reference.
Set WNDTOP from A-reg. & FR4B 64331 —1205 SETWND A The processor status (P-reg) pushed onto the stack by the taking of
Load A with ¢ for WNDLFT. & FR4D 64333 -1213 A the interrupt is popped into the A-reg, and then pushed back onto the
Set WNDLFT from A-reg. & FB4F 64335 -1201 A ntack so that the stack and pointer are not changed, By shifting the
TLoad A with 4@ for WNDWDTH. & FB51 64337 =1190 A A-reg left three bits, the IR routine moves into the sign bit the bit
Set WNDWDTH from A-reg. & FRS53 64339 -1197 A which indicates (in this case by being a zero) that the interrupt is
Load A with 24 for WIDRTM. & FBSS A4341 =1195 A an TR {nterrupt rather than execution of a BRK instruction. Th;

’ = " Nonltor then executes a Jump Indirect instruction via location 3FE-
ii;dwingfghfggmfgrrgﬁ: i Egg; 23%22 _iigf i SWAFE to the user provided %RQ Interrupt Handler. UNote that onsan IRG
Set CV from A-reg. & FHESHR 64347 =1189 TARV A Interrupt the X, Y, and S registers are not saved by the Monitor.

Jump to VTAB to set BASL,H & RTS. FBSD 64349 =1187 A Aluo, the interrupt handler has the responsibility of clearing the $@4
Set INVFLG to SFF = normal video. FE84 65156 =38(f SETNORM Y hit on exit to allow further interrupts.

Set INVFLG from Y-reg. FE86 65158 =378 SETIFLG none

Set port ¢ (keyboard) for input. FE89 65161 -375 SETKBD A,X,Y

Set port ¢ (screen) for output. FE93 65171 =365 SETVID AX,Y BRK INSTRUCT]ON INTERRUPT

Fxecut fon of a BRK instruction causes the 65(2 to simulate an IRQ
fnterrupt with minor changes. Due to the method the instruction is

handled, the address pushed onto the stack as part of the interrupt

FOR COMPATIBILITY WITH OLD MONITOR TFF59 65369 =167 OLDRST
the RESET routine is still here.
Call SETNORM — white on black.

& tlmulat fon is two bytes beyond the BRK instruction executed.
Call INIT -Text & full seroll. & FF5C 65372 -164
Call SETVID - screen as output. & FF5F 65375 -161 Belore pushing the P-reg onto the stack, the $1¢ bit is set to
Call SETKBD - keyboard = input. & FF62 65378 -158 (ndleate to the interrupt handling routine that the cause of the
Clear 65#2 decimal mode,set hex., & FF65 65381 -155 MON Interrapt was executfon of a BRK instruction rather than the IRQ line.
Sound bell. & FF66 65382 -154 Al ter pushing the P-reg onto the stack, the $@4 bit is set to inhibit
Monitor Command Processor Entry. FF69 65385 ~-151 MOnZ Iy toterrapts from being recognized until the interrupt handler
Set ™*'" as prompt character. clears the condition. Control is then transferred according to the
B IR Interrupt vector to Monitor label IRQ. As described above
repacdiog humdling of an IRQ interrupt, the IRQ routine first stores
the A=rep at ACC (545) for future reference, and then uses the A-reg
to test the stacked P-reg contents for a one in the 31¥ position. The
atack and stack pointer are not changed by this operation. The result

60 MONITORS PEELED INTERRUPT PROCESSING 61

S Al s ol - oB . NN, BN . BN, . BN, BN, B, AT AN, BN, B o B . B . B . e o o T -

BEEEBEEEREEEEEEBEBEEEEE RS

of the test is a transfer of control to Monitor label BREAK. Note in
the address table that the address of BREAK is not the same in the two
Monitors.

BRK INSTRUCTION—SAVING OF STATUS

In each Monitor the first thing done in the BRFAK routine is to save
full machine status in page zero. The contents of the A-reg have
already been stored by entry into the IRQ interrupt handler. The BREAK
routine pops the stacked contents of the P-reg from the stack, and
does a JSR to SAV] at which point the remaining registers are saved.
Note that this clears the $@4 bit, allowing further IRQ or BRK
interrupts to be taken. The S-reg saved at that time, however, has
been incremented once by popping the P-reg back from the stack and
decremented twice by the JSR to SAV1. On return from SAV1, the BREAK
routine pops the Program Counter from the stack and stores it in page
zero locations PCL-PCH. The address table at the end of this section
indicates the page zero locations at which the above items are stored.

BRK INSTRUCTION—OLD MONITOR

The function of rhe BRK instruction interrupt handler of the 0ld
Monitor is to display through COUT the machine status at the time the
BRK instruction was encountered, and then return control to the top of
the Monitor at label MON. The details above describe the handling of
the interrupt through storage of machine status in page zero,
including PCL,H. The 0ld Monitor BREAK routine next does a JSR to
INSDS1 to display the instruction at the address indicated by PCL-PCH
(which is two bytes beyond the BRK executed), and a JSR to RGDSPI to
display the contents of the five registers, P, A, X, Y, §. Note that
the S-reg as displayed is two less thanm it was at the time of the BRK
execution due to the JSR to SAVI. On completion of the register
display, a JMP to MON completes the handling of the interrupt.

BRK INSTRUCTION—AUTOSTART MONITOR

The Autostart Monitor handles IRQ interrupt which is really a BRK
instruction interrupt by saving registers and Program Counter in page
zero locations. The Autostart Monitor BREAK routine then exits via the
Apple-II BREAK vector at $@3F@-$@3Fl. Thus, it is possible for a user
program to gain control at that point and do something other than to
display the registers and return to the Monitor command Processor.

Such a program must be sure to clear the $@4 bit in the P-reg on
return. During RESET interrupt handling for power-on, this vector is
initialized to point at Autostart Monitor label OLDBRK, which routine
does the same thing as was done in 0ld Monitor. That is, it does a JSR
to INSDS1 to display the disassembled instruction at the location
indicated by PCL- PCH, a JSR to RGDSPl to display the register
contents, and a JMP to MON to complete the handling of the interrupt.
Note: after DOS 3.2 has destroyed page 3 during the bootstrap
operation, it restores this vector to point to $FA59, OLDBRK.

62 MONITORS PEELED

ryYy ¥y ¥y yYyryryyryryrSyYyY Y YTTE®ETSYT Y YyYYTTYTYTYTYTCT

" TN A A EE R R

ADDRESS TABLE

Function Hex +Dec —Dec Monitor Registers
Addr Addr Addr Label Destroyed
Disassemble the instruction at F8D¢ 63696 -184f INSTDSP A,X,Y
(PCL,N}, print thru COUT,
Display registers thru COUT from FAD7 64215 -1321 REGDSP ALX
save area, after carriage return.
Display registers thru COUT from FADA 64218 -1318 RcDSPI A, X
save area.
Save 65002 regs at $45-49. FF4A 65354 —-182 SAVE ALX
Save A-reg at ACC §45. &
Save X-reg at XREG $46. & FF4C 65356 -18@ savi
Save Y-reg at YREG $47. & FF4E 65358 -178
Save P-reg at STATUS $48, & FF5(0 653600 -176
Save S-reg at SPNT $49. & FF54 65364 -172
Clear 652 decimal mode (set hex).
Clear 65¢2 decimal mode (set hex) & FF65 65381 -155 MON
Sound bell. & FF66 65382 -154
Monitor Command Processor Entry. FF69 65385 =151 MONZ
Set "*™ ag prompt character.
AUTOSTART IRO/BRK HANDLING
Determine whether interrupt was FA4LR 64364 =1472 IRQ A
IRGQ or BRK, transfer control
accordingly.
Handle BRK interrupt: FA4GC 64076 -146(] BREAK ALK, Y
Restore P-reg from stack.
Save registers (SAV1) X,Y,P,S.
Move interrupt location from stack
to PCL,H.
JMP (BRKV) to possibly user
specified routine (normally to
OLDBRK, below).
Default BRK interrupt handler FAS9 64389 -1447 OLDBRK A,X,Y
completion routine
Display instruction (2 bytes past),
Display registers, JMP to MON.
OLD MONITOR TRO/BRK HANDLING
Determine whether interrupt was FABG 64134 -1402 IRQ A
IRO or BREK, transfer control
accordingly.
tlandle BRK interrupt: FA92 64146 -139¢ BREAK ALK, Y
Save repisters,
Display instruction (2 bytes past),
Display registers, JMP to MON.
PCL,H 58,59 334, 3B YREG 71 s47
ACC 69 545 YSAV 52 $34
XREG 7@ 546 STATUS 72 $48

INTERRUPT PROCESSING 63

64 MONITORS PEELED

M T T T O T MM T M MM T T T T O FTOTOTTOTT T ™M

TR R R R R R R R R R R R E R L

e — - —

CHAPTER 4

MISCELLANY
MACHINE LANGUAGE DEVELOPMENT AIDS

There are many routines in the Monitor which can be helpful when
developing machine language programs. Some of these are routines to be
nred in the finished program, like the Monitor MOVE routine. Others

In this list are general, special, or very special secreen output
rout ines, and some data manipulation routines.

ADDRESS TABLE

Funct ion Hex +Dec =Dec Monitor Registers
Addr Addr Addr Lahel Destroyed

Write byte in A to screen at CV,CH. FDED 65835 =531 COUT TA
Print carrviage return thru COUT. FDBE 6491¢p -626 CROUT A
I'rint three blanks thru COUT. F948 63816 =-172¢0 PRBLNE A,X
'rint (X} blanks thru COUT. F94A 63818 -1718 PRBL2 A8, X
Vrint character in A followed by FO94C 638200 -1716 PREL3 ALK

{¥)=1 blanks.

Print BELL code thru COUT. FF3A 65338 -198 BELL A
Print "ERR" and BELL thru COUT. FF2D 65325 =211 PRERR A
I'rint low nibble of A as hex char. FDE3 64995 =541 PRHEX A
rint A-reg as 2 hex nibbles. FDDA 64986 =550 PRBYTE A
Print hex of Y,X regs. FO4A 638(8 -1728 PRNTYX A
Print hex of A,X regs. FO941 638009 —1727 PRNTAX A
Print hex of ¥-reg. F944 63812 -1724 PRNTX A
I'rint CR, then hex of Y,X regs, FDY96 64918 -618 PRYXZ ALY
then minus sign (or dash).

I'rint hex of Y,X regs, then dash. FD9% 64921 -615 ALY
'rint CR, hex of AlH,AlL, and dash. FD92 64914 =622 PRAL Ao X, Y
Print memory as hex with preceeding FDA3 64931 -6(5 XAMB A (Y=¢)

address from mmmm to mom? where

mme {5 initial content of AlL,IL.
trint memory as hex from (AlL,H) FIIB3 64947 =589 XAl A (Y=@)
threa (AZL,H).

Save AXL,Y,P,S regs at $45-49. FF4A 65354 =182 SAVE ALX
Muplay registers with names from FAD7 64215 =1321 REGDSP A,X
545-09 as SAVEd, with preceeding

carriapge return.

Hisplay reps as above without CR. FADA 64218 -1318 RGDSEPL A X
testore regs ALY, Y,P not S from 545 FF3F 65343 -193 RESTORE A,X,Y,P

Hanitor Command Processor GO entry. FEB6 652@6 =338 GO ALX,Y,P
Set PCLLH From ALL,H if entered. &

Call RESTORE, set all regs but 5.& FEBY 652009 =327

Jump wia PCL,IL. FERC 65212 =324

Mowve memory contents to (A4L,H) FE2C 65@68 -468 HMOVE A (Y=()
From (AL H) thru (AZL,I1).

MISCELLANY 65

Function Hex +Dec —-Dec Monitor Registers
Addr Addr Addr Label Destroved
Compare memory contents (A4L,H) FE36 65@¢78 -458 VFY A (Y=
to (AIL,H) thru {(A2L,H), print
differences thru COUT.
Increment A4L,H ($42-43). & FCB4 64692 -844 NXTA4 A
Increment AIL,H ($3C-3D), set Carry FCBA 64698 -838 NXTAl A
if A2L,H less than AlL,H.
Set GBASL,H for line (A). FB4T7 63559 -1977 GBASCALC A
Clear A-reg to a nibble, leaving F879 63609 -1927 SCRN2 A
in low nibble entry low nibble if
entry carry clear, high nibble if
entry carry set.
Disassemble the instruction at F8D@ 63696 -184Q INSTDSP A X,Y
(PCL,H), print thru COUT.
Compute (PCL,H) + (LENGTH), leave F953 63827 -17¢9 PCADJ ALY
results in AY. Decimal Mode Flag
must be clear before calling PCADJ.
Read paddle (X) into (Y-reg). FRIE 64286 =—125(f PREAD ALY
Wait .@¢l seconds, then sound bell. FBDD 64477 =159 &Y
Load Y=192 for .l sec of bell. & FBE2 64482 -1(54 ALY
Toggle speaker at | KHZ for number FBE4 64484 ~-1(152 BELL2 ALY
of cycles in Y-reg.
Place character in screen refresh FBFD 645(¢9 -1@27 VIDOUT A,Y
memory if not control character.
If known control character, do it.
If unknown control character, RTS.
Clear window to bhlank, set cursor FC58 646GF =936 HOME ALY
to top left corner.
Load ¢ into Y, then print dash. FDOC 64924 —-612
Print dash thru COUT. FDIE 64926 =610
Character print to screen oulput FDF@ 65¢¢8 =528 COUTIL 7A
routine entry - normal for CSWL.
Print character to screen with
appropriate actions on controls
and control characters.
If (A)<SAQ goto COUTZ, bypass
inverse video mask.
Monitor entry on RESET key pressed FF59 65369 -167 RESET
or Power on.
Call SETNORM - white on black. &
Clear 6502 decimal mode (set hex).& FF65 65381 -155 MON
Sound bell & FFe6 65382 =154
Monitor Command Processor Entry. FF69 65385 -151 MONZ
Set "*" as prompt character &
Set (a) as prompt character & FF6B 65387 =149
Monitor Command Processor command FFAT 65447 -89 CETNUM
parsing routine; save hex digits
in A2L,H, return with command
(first non—hex) in A-reg, Y-reg
set for next character.
AlL,H 6#i,61 $3C,3D AML, B B6,67 542,43 YREG 71 S47
A2L,H 62,63 $3E,3F PCL, 58,59 $3A,3B XREG 70 $46
A3L,H B4,65 s40,41 ACC 69 345

66 MONITORS PEELED

N A MMM AW MMM ™Mo o T T O OT T T T T ™

BEEREEEEEREEEEEEE R R R -

LORES PLOTTING

In standard (or low resolution) plotting mode, the graphic area of the
wereen is 4% points wide and either 4@ points high with 4 lines of

text below or 48 lines high. The X coordinate is horizontal and the Y
coordinate is vertical. The same memory area is used for low
resolution plotting as is used for text output to the screen. However,
In the graphics mode, each character position contains information for
two plot points, one immediately above the other. Thus, 2f text lines
aure used to display 4@ graphics lines in the mixed mode, and 24 text
[ines are used to display 48 graphics lines in the full screen mode.

There are four bits allocated for each point, by means of which the
peint may be displayed in any of 16 colors.

The Monitor contains routines supporting the following functions:
Set display mode to mixed graphics and text.

Clear the graphics part of the screen (in whole or in limited
part).

Set a color control byte to be used for each plot point
established until another color is selected.

Plot a single point at an indicated vertical/horizontal position.

Plot a horizontal line from one vertical/horizontal point to a
vertical value.

Plot a vertical line from one vertical/horizontal point to a
vertical wvalue.

Return to requesting program the color value of the ponint at a
specified coordinate.

There are limitations on some of these functions which may not always
he desirable. For example, using the entry point which sets mixed
praphics and text includes clearing the graphics part of the screen,
tnetting the Scroll Window to be the entire remainder of the screen,

mnd moving the cursor (straight down from current position) to the
bottom line of the screen. In addition, there is no Monitor entry
point for setting full screen graphics mode. However, the display mode
controls are easily set in any desired fashion merely by poking or
storing into the appropriate memory locations, so this is certainly no
ma jor problem.

Various page zero locations are used for low resolution graphics mode.

MISCELLANY 67

PAGE ZERO FIELDS

Dec
Routine Addr.
GBASL,H 38-39
COLOR 48
MASK 46
H2 44
V2 45

Hex
Addr.

Description

526-27

$30

52E

52¢

52D

ADDRESS TABLE

is set by the GBASCALC routine to the memory
address of the plotting line specified.

contains the selected color wvalue in both high
and low nibbles of the byte.

is used internally by the plot routines as $F§
or S$#F to set either the high or low nibble of
the receiving byte depending on whether the
graphics line is the top or bottom of the two
displaved from that "text" line.

is the right end point for horizontal line
drawing.

is the bottom end point for wvertical line
drawing.

T " T T T Y T TTW

E

Function Hex +hec —Dee Monitor Registcrsk
Addr Addr Addr Label Destroved

Plot a point at line (A) col. (Y) FEPYH a3488 -2@48 PLOT A
leaving GRASL,H and MASK set.

Plot a point, line per GBASL,H F8PE 635¢2 -2§34 PLOTI A
and MASK, col. in Y.

NDraw horizontal line at (A) from F819 63513 =-2423 HLINE ALY
(Y) thru (H2), left to right.

Draw horizontal line at line F8IC 63516 -=2@2{ HLINE1 ALY
indicated by GBASL,H. MASK from
(Y) thru (H2).

Plot vertical line at (Y) from FB28 63528 -20¢8 VLINE A
(A) thru (V2).

Plot vertical lime at (Y} from F826 63526 -201¢ VLINEZ A
(A)+1l4carry thru (V2).

Plot vertical line at (Y) from F82D 63533 -2¢¢3 A
(A)+] thru (V2).

Clear full (48 lines) screen. F832 63538 —-1998 CLRSCR ALY
Clear graphics area (4% lines). F836 63542 -1994 CLRTOP ALY
Clear praphies partial from line §§ F838 63544 -1992 CLRSC2 ALY
thru (Y}, 4¥ col. wide.

Clear praphics partial from line @ F83A 63546 -199¢ ALY
to (V2) 4 col. wide.

Clear graphics partial, top left F&3IC A3548 -1998 CLR5G3 ALY

lines @ thru (V2),col. @ thru (Y).

68 MONITORS PEELED

E
d
d
4
k
E
4
4
4
4
3

TEEREREREEEER

BEEEEEELEEEEEE:

Function Hex +hec -Dec Monitor Registers
Addr Addr Addr Lahel Destroved
Set LORES screen to COLOR from top TBAG 63552 -1984 AY
left corner to (Y),(VZ).
ntry A-reg must he @.
Entry Y-reg = right column to set.
Set V2 to last line to set.
Ser COLOR for following points F864 63588 -1948 SETCOL A
Lo (1’\).
UChange COLOR to (COLOR)+3. FB85F 63583 -1953 NXTCOL A
Load to A color of point (A),(Y). F871 636@1 -1935 SCRN A
Set GBASL,H from A. (A)=line/2. F847 63559 -1977 GBASCALC A
Set Color Graphics display mode FB4G 64328 -=1216 SETCR ALY
and following are also done;
Set praphics mode to Mixed. & FBA3 64323 -=-1213 ALY
{lear graphics part of screen. & FB46 64326 =121 A, Y
Load §14 to A for WNDTOP. & FB49 64329 -12(7 A
Slore A to WNDTOP. & FB4B 64331 ~-12(85 SETWND A
Load ¢ to A for WNDLFT. & FB4D 64333 -12¢3 A
Store A to WHNDLFT. & FB4F 64335 -12¢1 A
load §28 to A for WNDWDTH. & FB51 64337 -1199 A
Stare A to WNDWDTH. & FB53 64339 -1197 A
Laoad §18 to A for WNDBTM. & FBSS 64341 -1195 A
Store A to WHDBTM. & FBS7 64343 -=1193 A
Load 517 to A for CV. & FB59 64345 -1191 A

Lo tao TABV to set BASL,H.

DATA MANUPILATION FUNCTIONS

There are

a number of routines in the Monitor which may be called by
proprams to perform often needed tasks. The routines described in
this section are miscellaneous routines which move data from place to
pdace or convert the form of information provided to the routines.

Hote that some of these routines are in both the 0ld Monitor and the
Autoastart Monitor while other routines are in only one or the other.
Three address tables are provided; one for both Monitors, one for the
Uld Honlitor, and one for the Autostart Monitor.

nmHer

ROUTINES
Memory to Memory Move

Thiv ront lne is used by the tonitor "M" command. As the Command

lnterpreter scans the keyhoard input, fields Al, AZ, and A4 are

Foaded. When the Command Interpreter encounters the "M" it calls label
HOvE, g dtadieated in the table. The contents of memory from locations
(ALY then CAZY are moved to memory beginning at location (A4). See the
dample propram in the section "Secondary Display Area Ways and Means"
for e of MOVED From BASIC, with the assistance of the Monitor GO

font foae far setting registers on the way in.

MISCELLANY 69

Jump to Address with Registers Loaded

The routine in the Monitor which responds to the "G" command uses some
Monitor routines from BASIC or APPLESOFT in that the registers are
loaded from the save area and then control is transferred to the
location specified in PCL,H. Thus, a BASIC program can set up the
destination address and register contents, and then CALL —468 to have
the requested routine entered. This is used in sample programs in this
section and in the section on "Secondary Display Areas".

Increment Address Fields

The Monitor Move routine described above is a sample caller of the
NXTA4 and NXTAl routines. When NXTA4 is called, it increments the two
byte field A4L,H and then falls into label NXTAl. The routine ar NXTAl
increments the two byte field at AlL,H, and then compares that field
to the two byte field AZL,H before returning to the calling program.

On return to the calling program, the Carry status bit is clear if
(AlL,H) is less than or equal to (A2L,I). Carry is set if (AIL,H) is
greater than (AZ2L,H).

Save 6502 Registers

The SAVE routine is used by various other Moniter routines to store
the 65¢2 registers in page zero locations $43-$49. This routine may
be called by user program under certain conditions — namely, that
nelither the Monitor nor any other program will be calling SAVE at the
same time. 1In the 01d Monitor SAVE and RESTORE are used in support of
Monitor commands S and T, single step and instruction trace. TIn both
Monitors, the SAVE routine is called on a BRK interrupt at entry point
SAVL as the A-reg is stored at $45 on entry into IRQ interrupt
processing.

Restore 6502 Registers

The routine at lahel RESTORE is the inverse of the SAVE routine,
except that the S-teg is not loaded. 1In the 0ld Monitor, RESTORE is
utilized by instruction step and trace routines before controlled
execution of each traced instruction. In both Monitors, the registers
are loaded by RESTORE in execution of the Monitor G command before
transferring control to the operator—indicated location.

Multiply Two Byte Fields

The MUL and MULPM routines multiply two byte fields to give a four
byte product. They exist only in the 0ld Monitor. If a program (such
as an assembler) calls MULPM at FB6@, and it is executed with the
Autostart Monitor in the machine, the result is that on each call the
screen will be cleared and "APPLE II" will be written on the top line.

70 MONITORS PEELED

m M T T OO T T M"AT T OTFE T T O'T T T T WM™

EETEEEEEBEEEEEEEE

Multiply Routine

Mote in the following that the data fields for multiply and divide are
in the same format as other multiple byte numbers in the Apple: lowest
memory address is least significant byte.

Set Multiplier in
Set Multiplicand in
Should be zero — see note

$55,54 (MSB,LSB)
$51,5@ (MSB,LSB)
53,52

Call/JSR FB6G or FB63 (-1184 or -1181) (MULPM or MUL) depending on
#ipn conventions or requirements.

The result, in order of most significant to least, is in $53, §52,
551, 550, this result is positive. If one of the two input factors
(but not both) was negative, then SIGN (at $2F) contains an $¢1 bit,

Indicating that the result should be complemented by the user program
before further use.

HOTE: The table of values above indicates that $53,52 should be set

to zero before calling multiply. If this is not done, then the initial
contents of this field will be added to the result. For example, if a
table has an origin of $84(¢) with 7 byte long entries, the address of
entry # can be determined by entering the multiply with $840¢ in

553,52 and the 8 and 7 in position for the multiply.

Examples:
Called Inputs Outputs
Routine $51 §5¢8 55 $54 853 $52 §51 350 §2F
HULPM aF o1 g 71 00 07 @7 9T 09
a8 @1 d1 gy G g¢ @1 d¢ qo
P4 gg g8 gg W 20 og o0 g9
FC ¢¢ @38 ¢¢ ¢ 20 0@ ¢¢ @1
FC @@ F8 ¢ ¢ 204 099 ¢ @2
IF FF 7F FF 3F FF ?8 @1 L1
8¢ @@ @2 g¢ g1 g¢ @ @¢ g1
8¢ u¢ 8¢ g 49 g8 ¢ g¢ g2
MUl @ @1 ge ¢ 9 G¢ 9o g1
P @1 g1 og ¢¢ od g1 9¢
P4 g¢ 98 ¢g g9¢ 20 ge g
FC o ¢¢ @8 3¢ @7 B¢ ¢g g9
rc ¢¢ rF8 g¢ F4 20 d@ qg
@ FC @@ F8 @9 ¢d¢ F4 2¢
80 G¢ @2 ¢g @91 o¢ g3 og
84 d¢ 8p gg 49 o6 oe g
12 34 56 78 @6 26 9@ of

MISCELLANY 71

Divide Four Byte Dividend by Two Byte Divisor

This routine divides a four byte dividend by a two bit divisor, giving
a two byte quotient and a two byte remainder. It is available only in
the 0ld Monitor. This routine accomplishes the division of the number
in bytes $53,52,51,5@ by the number in bytes $55,54, leaving the
quotient in $51,5{ and the remainder in $53,52 (most significant to
least significant).

If the contents of $53,52 is larger than the contents of $55,54, then
the result will not fit in the quotient bytes - overflow is the
result. The calling program must not let this happen.

With regards to scaling, looking at the four byte dividend as an
integer value and the divisor in $§55,54 as an integer, the quotient
and remainder fields are also integers.

Sign can be a problem if the DIVPM entry point is used. The sign bit
of the dividend is the $8f bit of byte $51. If the intended divide is
two bytes (with $53,52 cleared before divide) then signed fields
division is supported, with the sign bit being the LSB of $2F. 1If the
call is to DIVPM, and if $2F contains %@1, then complement the results
before using them.

When using unsigned divide, entry point DIV, then the divide is 32 bit
field by 16 bit field with 16 bit results.

Examples:

Called Inputs Outputs
Routine Dividend Divisor Quotient Remainder Sign
§53 52 5T o5f 555 54 55T 50 $53 52 $2F

DIVPM GF 4% 9 ¢d @8 gg e g g@ @g o

[$FB81] 0@ 9¢ ¢¢ @8 @3 ¢4 e y2 @9 oy @

[64385] @9 ¢1 0@ @y e g2 8¢ gy B o gg

-1151 Ue g9 oF @3 w9y g2 e @1 oy ¢l

: : 00 9¢ 3¢ og @2 gg e 18 gp B¢)
30 9@ 3¢ 09 20 99 g @1 16 ¢ @9
B3 ¢gg 33 33 ?g 22 #1 81 f¢ 11 (rlf}
@ 10 4g o B4 g @4 19 @9 d¢ 1)
$@ 2¢ 8 g¢ @8 gg B4 19 ge @@ @1
7@ 2¢ BZ ¢¢ s g4 @4 or @6 o@ 28
0o 19 41 06 B4 g@ gs 10 @1 gy 99

e @ a9 o

[$FR84] o0 87 ¢g 0@ 8¢ g @1 o

[2&388] @¢ ¢g 89 ¢ @8 oy Wy 19 @3 ¢

[-1148]

72 MONITORS PEELED

M T T T T T T T T T T T T T T

- e

CIECEE- R

Ul

i:ﬂ
i:ll
i?ﬂ
fll
'lﬂ
i.'l!l
"
_F]
-
ill
ill
:
n

Establish a RESET Vector

The Autostart Monitor supports an address wvector for completion of
tandling a RESET interrupt. It is called the Soft Entry wvector as it
is designed to allow resumption of processing after a RESET. This
vector is in page three. It contains the address to which control is
to be transferred after the screen, keyboard, and other basic Apple
hardware items have been set to their "initial" states. For example,
the display hardware is set to display primary area text, and the
Seroll Window full screen values are set.

After such initialization is performed, locations $@3F3 and S$@3F4 are
tested against one another to determine whether the vector 1in S¢IF 2~
SPIF3 1s to be considered valid. If s0, control is transferred to
(5#3F2~@3F3). MNormally, this results in transfer of contrel to SEPY3
to accomplish the result of entry to the Monitor of a control-C, re-
entry into BASIC or APPLESOFT. During the bootstrap operation, DOS
installs its own restart point in this vector. And, of course, you may
wist to set some other value in this vector, such as that which will

cause the lonitor (with asterisk prompt) to be called, as was the
normal case with the 0ld Monitor. To set a different wvalue in that

vector, POKE or store the desired value in $@3F2-$@3F3 and then CALL

or JS5R to SETPWRC (SFB6F or —1169) to have the Monitor set S@3F4
appropriately.

Convert Hex Characters to Value for Use

I'roprammer utility programs often need input of address or data in hex
rather than in decimal. The Monitor alse uses input in hex, and
therefore has a way of converting input hex characters to a value in a
fleld. The GETNUM routine in the Monitor converts characters from the
lteyboard Input area (SP200-$@2FF) to hex stored in A2L,H and
conditionally in AlL,H and A3L,H.

The GETNUM routine converts characters in the S$@$2(¢) area beginning at
SH2UHCY-reg) and continuing until a character is found which is not a
hes dgit (not @-9 or A-F). The result in A2L,H (and AlL,H and A3L,H

L (Miane) ¥) is the last four hex digits in the string converted if
the wtring is more than four hex digits. TIf the string is fewer rthan
four hex dipits the result field contains the value right adjusted
whth leading zeroes. A sample program is provided at the end of this
sect tun showing use of GETNUM from APPLESOFT.

Disassemble an Instruction

The Appde 11 Monitor contains a disassembler by means of which opne can
dluplay o portion of a machine language program in mnemonics instead

ob ust hexo At label LIST ($FE5SE) is the routine to which control is
pansed when the Monitor command "L" is used. This routine sets a

MISCELLANY 73

Function Hex +Dec —-Dec Monitor Registers

counter to 2@}, and then calls the single instruction disassembler 2@ Addr Addr Addr Label Destroved

times, with appropriate adjustment of the instruction pointer PCL,I.
This routine can be used as an example of how to use the locations in
the address table with labels INSTDSP and PCADJ.

Move bytes In memory to (A4L,H) FE2C 65@68 =468 MOVE A
from (AIL,H) thru (A2L,H).

Note: Y-reg must be zero on entry.
The routine at INSTDSP uses the INSDSI routine to set the zero page Y

locations FORMAT and LENGTH appropriately for the instruction at
(PCL,H). INSDS1 also prints to the screen the contents of PCL,H, the
address of the instruction to be disassembled. On return from INSDSI,
the INSTDSP routine controls the printing of the rest of the
disassembly line.

Increment pointer A4L H. & FCB4 64692 —B44 NXTA4 A
[nerement pointer AIL,H with set FCBA 64698 -B38 NXTAL A
of ecarry if resulting (AIL,H) is

preater than (A2L,H).

Save 65@2 regs A,X,Y,P,S at

Note that PCL,H is not altered by disassembly of the instruction. e y - \

Thus, it must’be "maintained" byythe programywhich calls INSTDSP. FAIRA. S gt
This is accomplished by calling the PCADJ routine, which returns the Restore 65$2 regs A,X,Y,P from FF3F 65343 —-193 RESTORE A.X.V.P
new values to the calling program, to store into PCL and PCH in the G45=-548. ‘ R
A-teg and Y-reg, respectively, having computed the new wvalue from PCL

and PCH and LENGTH (set by INSDS1). Convert hex characters from FFA7 65447 -89 GETNUM A,X,Y

F
E
k
k
b
b
k
b
t
k
b
¢
E
E
k
k
k
b
k
d
s
4
4
3

S2HU,Y to value in A2L,H (and
AL, and A3L,H if (MODE)=@).

ADDRESS TABLE

Function Hex +Dec —Dec Meonitor Registers
Addr Addr Addr Label Destroyed

Dinnagemble one instruction with F8D@ 63696 -184@ INSTDSP A,X,Y
display thru CoOT.

Gompute new PCL,H after disassembly F953 63827 -17¢9 PCADJ ALK, Y
nro triace or step - return results
In AY regs for (PCL,H).

OLD MONITOR ONLY
Multiply signed fields leaving FBOE 64352 -1184 MULPM AXY
sign in LSB of SIGHN.

Multiply fields unsigned, FB63 64355 -1181 MUL ALK, Y
(51,5@) * (55,54) = (53,52,51,5¢).

APPLESOFT SAMPLE DATA MANIPULATION PROGRAM

)) 14 REM DATA MANIPULATION FUNCTIONS
Divide signed fields leaving sign FB81 64385 -1151 DIVPM A, X, Y i REM SAMPLE PROGRAM
in SIGN LSE (from 51,55). 18 REM MEMORY DUMP
)) hip RFM OF HEX AREA INDICATED.
Divide unsigned fields FBB4 64388 -1148 DIV A XY) GOTO 1B REM BYPASS SURROUTINES
(53,52,51,5@)/(55,54)=(51,5¢). i REM CALL GETNUM ROUTINE VIA GO ROUTINE
21l POKE 58,167: RE} o
Set absolute values for ACL,H and FBA4 6442¢ -1116 MDI A,X, Y D POKE 59255 e ggh=§§;
AUXL,H leaving resulting sign in AMWE SIS = ADS + " ": REM BUILD STRING TO STORE
LSB of SIGN (called by MULPM and A4 ForR T = 1 TO LEN (SI$) REM: STORE STRING IN INPUT BUFFER
DIVPM). e ces MIDS (ST8,I,1) REM: A
Ao oo, ASC (CCs) + 128 REM: o
I POKE 512 + I,60%
AUTOSTART MONITOR ONLY su NexT
Set validity of RESET wvector. FB6F 64367 -1169 SETPWRC A 20 POKE 71, 1: REM SET YREG TO START AT LOCATION 513
WU POKE 49,0 REM CLEAR MODE BYTE
VY CALL = 327: REM GO PROCESSOR
BOTH OLD AND AUTOSTART MONITORS A sT PIEEK (62) + 256 * PEEK (63): REM ST=START ADDRESS($A2)
Monitor Command Processor GO entry. FER6 652¢6 330 GO AV,Y,P (R0 L 51 > 32767 THEN ST = ST - 65536 REM TWGO’S COMPLEMENT

Set PCL,H from AIL,H if entered. &
Call RESTORE, set all regs but S.& FER9 65209 -327
Jump via PCL,H. FEBC 65212 =324

ADDRESS IF >= $8(4¢
Vg RETIR M

o
0
'm
o
P‘l
»
;cll
"
[

fl]
iﬂ
fl!
-
iﬂ
'EIE:
il!
iﬂ
-
il

74 MONITORS PEELED MISCELLANY 75

6@@ REM DISPLAY HEX CONTENTS
61@ SH%Z = ST / 256 REM GET HI ADDRESS BYTFE
620 SL%Z = ST - SHZ % 256: REM GET LO ADDRESS BYTE

630 IF SHY < ¢ THEN SHZ + 256: RFEM GET 2°S COMP IF NECESSARY

64 POKE 6@,SL%Z:POKE 61,SHZ

65 RMZ = SL% — (INT (SL% / 8)) * 8 REM RM% =MOD 8 OF 1O BYTE
660 IF RMZ THEN CALL —-622

67¢) ~POKE 71,#: REM SET "Y" REG TO ZERO

680 POKE 58,163: REM PCL = $A3

i

69¢ POKE 59,253: REM PCH = $FD

7¢¢ CALL - 327: REM CLEAR "Y" REG & S$FDA3C

71¢ POKE 36,29: PRINT ™! ";: REM SEPARATES HEX FROM ASCII
728 REM DISPLAY ASCII CHARACTER CONTENTS

73¢ SE = ST + 7 — RM# REM
740 FOR I = ST TO SE REM

SEPARATES HEX FROM ASCII
PRINT ASCIT CONTENTS

750 CX = PEEK (I): IF CX < 128 THEN CX = CX + 128
760 CX$ = CHRS (CX): IF CX < 168 THEN CXg§ = "™
776 PRINT CX$;

780 NEXT

79¢ RETURN

103G REM PROGRAM START

1¢1¢ PRINT "HEX DISPLAY"

1(2¢ INPUT "ENTER ADDRESS "';ADS

1¢3¢ IF AD$ = "END'" THEN END

1¢4¢ TIF LEN (ADS) = G THEN 11@¢:REM CONTINUE WITH NEXT AVAILABLE
ADDRESS

135 GOSUB 20¢:

138¢ FOR J =1 TO 16: REM PRINT 16 LINES

1¢9% GOSUB 6(d

114 ST = ST + 8 - BRMZ

111¢ NEXT

112¢¢ PRINT

113¢ GoTo 1929

MONITOR COMMAND PROCESSOR

The Monitor Command Processor is that part of the Monitor which
responds to commands entered with the "*'" prompt character. These
commands include data movement from one location to another, cassette
tape reading and writing, instruction disassembly, and others)
described in the Reference Manual. The Reference Manual contains a
complete description of use of these commands. This section of this
manual describes calling some of the routines from a user program
instead of from the keyboard, and jumping into the Monitor with no
return to the user program.

ENTERING THE MONITOR COMMAND PROCESSOR

The Monitor Command Processor is that part of the Monitor which reads
keyboard input with the asterisk prompt character and performs the

requested service. "FEntering" the Command Processor implies turning
ovgr control of the machine to the Monitor lode. When the RESET key is

pressed with the 0ld Monitor in the Apple the computer is placed in

76 MONITORS PEELED

- P THE M A e e T T T TWM M e L B . B . B o

B E R

Monitor Mode. When the RESET key is pressed with the Autostart Monitor

in the machine, the computer generally goes into BASIC or APPLESOFT.
With the Autostart Monitor the only way to get into Monitor Mode is to
CALL one of these entry points (generally CALL - 151).

In this mode, data may be moved in memory using the Monitor Move
command. Blocks can be read from tape via the cassette tape data
transfer commands. Or any of the other Monitor commands may be used.
llowever, having entered Monitor Mode, the Monitor Command Processcr is
reading the commands from the kevboard and then acting upon them.

There are a number of entry points indicated in the address table for
"entering" the Monitor Command Processor. Please note that once the

Monitor 1s jumped to at the specified point, all of the initialization
described after that entry point is also performed. This is implied by

the "&" at the end of each function description.

CALLING THE MONITOR COMMAND PROCESSOR

"Calling" the Monitor Command Processor implies that return will take
place to the calling program. However, the driver part of the Monitor
Command Processor is not designed to operate in that fashion, so a
whort machine language program is required to allow exit back to the
calling program. A sample program is provided at the end of this
vection indicating the required setup. In the sample, the three byte
machine language routine is placed in page two (at $@2FC) but it may
be placed anywhere desired. With this program, Monitor calls from
BASIC or APPLESOFT are both supported.

A propgram which CALLs the Command Processor must first store the three
byt exit routine somewhere. Then the program can POKE a string of
Monitor commands into the input area, beginning at address $@2@0@, the
last command of each such string being a Monitor GO command to

transfer control to the exit routine.
comnand in the string is "@2FCG".

to pull one return address level

In the sample, the last Monitor
The function of the exit routine is

(two bytes) off of the stack, and

then do oan RTS teo return to the BASIC, APPLESOFT, or machine language
calling program.

ADDRESS TABLE

Fuanet Lon Hex +Dec =Dec Monitor Registers
Addr Addr Addr Labhel Destroyed
Monltor Command Processor, "blank” FEPJ 65@24 =512 BLI A, XY
entry point used for CR.
Monitor Command Processor, "blank" FE@4 65028 -5@38 BLANK ALK, Y
command entry point.
Honltor Command Processor, Store FE@BR 6535 -=5@1 STOR A
roul e,
Monltor GCommand Processor, set FE18 65048 =488 SETMODE A,Y
MODE tor colon, period, plus, or

mlne .

MISCELLANY 77

Function Hex +hec -Dec Monitor Registers
Addr Addr Addr Label Destroyed
Store appropriate value to MODE, FEID 65@53 -483 SETMDZ none
entered from BLANK also.
Monitor Command Processor routine FE2Q 65@56 —48¢ LT ALY
for less than (<) command.
Monitor Command Processor MOVE FE2C 65068 =468 MOVE A (Y=0)
routine. (AlL,H) thru (A2L,H) is
moved to (A4L,H) thru whatever.
Monitor Command Processor VERIFY FE36 65078 -458 VFY A (Y=@)
routine. (AlL,H) thru (A2L,H) is
compared to (A4L,H) thru whatever
with differences printed thru COUT.
Monitor Command Processor LIST FES5E 65118 =418 LIST v o |
(disassembler) routine: list 2§
instructions thru COUT.
Set INVFLG to $3F = inverse video. FES¢ 65152 -384 SETINV Y
Set INVFLG to SFF = normal video. FE84 65156 -38¢ SETNORM Y
Set INVFLG from Y-reg. FE86 65158 -378 SETIFLG none
Set port § (keyboard) for Input. FEB9 65161 =375 SETKBD A,X,Y
Set port (A) for input, FEBB 65163 -373 INPORT A,X,Y
Set port (A2L) for input. FEBD 65165 =371 INPRT ALK, Y
Set port ¥ (screen) for output. FE93 65171 =365 SETVID A,X,Y
Set port (A) for output. FE95 65173 =363 OUTPORT A,X,Y
Set port (AZL) for output. FE97 65175 =361 OUTPRT A,X,Y
Monitor Command Processor GO entry. FEB6 65206 -33¢ GO AX,Y,P
Set PCL,H from AlL,H if entered. &
Call RESTORE, set all regs but S.& FEB9 6529 =327
Jump via PCL,H. FEBC 65212 =324
Monitor Command Processor Display FEBF 65215 =321 REGZ
Register contents.
Monitor Command Processor Carriage FEF6 6527¢ -266 CRMON
Return entry.
First, simulate entry of blank.
Then POP 2 from stack and goto
Monitor Command Processor at MONZ.
Restore registers from $45-49: FF3F 65343 ~193 RESTORE
Load STATUS and push to stack. &
Load A from ACC. & FF42 65346 -~19¢
Load ¥ from XREG. & FF44 65348 -~188 RESTRI
Load Y from YREG. & FF46 65359 ~186
Load P from stack (PLP) and RTS. FF48 65352 -~184
Save 65¢2 regs at $45-49, FF4A 65354 ~182 SAVE
Save A-reg at ACC $45. &
Save X-reg at XREG S$46. & FF4C 65356 ~18¢0 SAV1
Save Y-reg at YREG $47. & FF4E 65358 -~178
Save P-reg at STATUS §48. & FF5¢ 653600 ~176
Save S-reg at SPNT $49. & FF54 65364 =~172
Clear 65#2 decimal mode (set hex).
78 MONITORS PEELED

6 AN . o . AR . SEEEN . o e AN BN . B . TN S BN BN . AT . B, BN AN . B, BN . . BN, . T, . B

B R - R EE T -

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed
Monitor entry on RESET key pressed FF59 65369 -167 RESET
or Power on.
Call SETNORM - white on black. &
Call INIT - Text + full scroll. & FF5C 65372 -164
GCall SETVID - screen as output. & FFS5F 65375 -161
Call SETKBD - keyboard = input. & FF62 65378 -158
Clear 65¢2 decimal mode (set hex).& FF65 65381 -155 MON
Sound bell. & FF66 65382 -154
Monitor Command Processor Entry. FF69 65385 =151 MONZ
Set "¥'" as prompt character. &
Set (A) as prompt character. & FFH6B 65387 -149
Call GETLNZ to read command line. & FF6D 65389 —147
Clear MODE before scanning line. & FF70 65392 -144
Pick up one command: FF73 65395 =141 NXTITM
Call GETNUM to scan input line,
saving hex digits in A2L,H, and
returning with non-hex in A-reg.
Save Y at YSAV - current place in
command line.
Call routine indicated by non-hex FF82 6541¢ =126
returned by GETNUM.
On return from Monitor Command FF85 65413 -123
Service routine, reload Y from
Y5AY and goto NXTITM to process
next command in the line, if any.
Monitor Command Processor command FFA7 65447 -89 GETNUM
parsing routine; save hex digits
fn AZL,H, return with command
(flrst non-hex) in A-reg, Y-reg
sel for next character.
Gall routine indicated by command FFBE 65479 -66 TOSUB
character:
Push address $FExx onto stack.
Pass (MODE) to called routine in
A=reg.
Clear MODE before call.
Call selected routine by RTS.
Clear MODE byte between commands. FFC7 65479 =57 ZMODE
OLD MONITOR ONLY
Fxecute Instruction at (PCL,H), FA43 640167 -1469 STEP
with display of instruction and
result repisters.
Monltor Command Processor TRACE FEC2 65218 =318 TRACE
Inutruetions routine.
Monltor STEP one instruction. FEC4 6522¢ =316 STEPZ
AL 6,61 $3C,3D PCL,H 58,59 $3A,3B
AZLL 62,63 S3E,3F ACC 69 $45
ABLLIL 64,65 SAU, 41 XREG 70 546
AdL T 6h, 67 542,43 YREG 71 547
YSAV 52 434
MISCELLANY

APPLESOFT SAMPLE PROGRAM

1 REM MONITOR COMMAND PROCESSOR SAMPLE PROGRAM
1¢ AAS$ = M2FC:68 68 6¢ N 2FCG ": REM SET UP RETURN ROUTINE (2FC

11 GOSUB 1(¢hgh: REM MOVE COMMAND TO KEYBOARD INPUT AREA
106 REM RETIRN IS SET. NOW CALL
141 RFM SOME MONITOR COMMANDS,

114 AAS = "FB@PL 1¢4.1FF 2FCG "

129 CALL - 936: REM CLEAR THE SCREFN

13¢ GOSUB 10¢4q: REM DO DISASSEMBLY, MEMORY DISPLAY, RETURN
146 PRINT : PRINT :

141 PRINT "THATS ALL. "

15¢ END

1¢¢¢ B = 511: REM FOR LOOP IS 1 TO LIM, SO B=EYTE BEFORE $2¢¢
1¢¢5 LIM = LEN (AAS)

1¢1¢ FOR I = 1 TO LIM

1¢2¢ P$ = MIDS (AAS,I,1)
1856 P = ASC (PS) + 128
1¢7¢ POKE B + I,P

1¢8¢ NEXT

1685 CALL - 144

1¢9@ RETURN

SPEAKER USE THROUGH THE MONITOR

There are many ways to use the speaker in the Apple II. One of these
ways is to signal program events. The Monitor contains a routine which
supports this use by toggling the speaker at 1 khz for .l second. This
is the "beep'" heard when the RESET key is pressed or at completion of a
tape record read or write.

The Apple II does not contain the only speaker in town. That is, some
printers which attach to the Apple II make a sound of some type when
presented with the BELL code. On the Apple II keyboard this is the
control-G. The character code is $87 or decimal 135. "Printing" this
character through COUT will cause the Apple to beep, and will cause a
printer "bell" to sound if there is one.

There are two ways for a user program to call the routine in the
Monitor which responds to output of 587 by sounding the beep.

If you intend to sound the bell in the Apple regardless of
output device in use, then directly call the routine in the
Monitor which produces the sound; CALL -1%59 (or CALL 64477),
or JSR FBDD expecting destruction of the A- reg and Y-reg.

If you want to sound the bell of the Apple Il if the screen is the
print device, or to sound the speaker in the printer, call the
entry point in the Monitor which places a $87 in the A~ reg and
"prints" it through COUT; CALL-198 (or CALL 65338) or JSR FF3A
expecting destruction of the A-reg.

80 MONITORS PEELED

ol s e e A s s s . S . . TN, . . BN BN TN . . B

BB R R R - R - EEE .

ADDRESS TABLE

Funetion Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed
TF (A)=587 wait .0l seconds, then FBDY 64473 -1063 BELLI g
sound the "hell". Else, RTS.
Wait .41 seconds, then sound bell. FBDD 64477 =159 ALY
Load ¥ = 192 for .1 sec of hell. & FBEZ 64482 -1§54 ALY
Togple speaker at 1 KHZ for number FBE4 64484 -1(52 BELL2 ALY
of ecycles in Y-rep.
Print thru COUT "ERR"” and bell code.FF2D 65325 =211 PRERR A
Print bell code ($87) thru COUT. FF3A 65338 -198 BELL A

CASSETTE TAPE INPUT AND OUTPUT

two primary entry points in the Monitor with regard to

There are

reading and writing tape. They are READ and WRITE. The requirements for
Cnlling these are described below. There are a number of other routine
cntry points which are used by the Monitor on bit and byte basis. These

nre deseribed helow to the extent of location in the Monitor and

Indfeation of which Apple II programs call them, but the precise
timingas of instructions between consecutive calls is beyond the scope

ol this manual .

Ano vou will have found by now, some tape files are composed of one
record, and some of two records. For example, LOADIing an APPLESOFT or
BASTC propram results in two heeps, signaling the completions of the
reads of two separate records from the tape.

el initions are in order:

A tape record is a single contiguous string of bits which is read

Into or written from memory as a unit. A tape record is a
physical entity.

A tile on tape is a series or sequence of one or more records
containing data in a logical organization. A file is a logical
entity.

A APPLESOFT or BASIC program file consists of two records. For BASIC,
the Uirnt of these records is two bytes long, and contains the length

ol the second record. When the Monitor has satisfied BASIC s read of
the tirpt record, BASIC uses the record length indicated in that record

to determine the start and end points in memory into which the Monitor

will read the second record. TFach call to READ or WRITE in the Monitor
acconpl trhes only one record input or output.

APTLESORT programs are also SAVEd as two record sets or files. However,
the Hirnt record is three bytes long: the first two bytes indicate the

fenpgth, and the third hyte is set to 555 to indicate a normal APPLESOFT
1 Can il terentinted from APPLESOFT I) program.

MISCELLANY 81

Some other programs write a longer (but fixed length) first record
containing length of the second record of the file, and other infor-
mation about the file such as date of creation or name of the file.

WRITE

SFECD 65229 -3¢7

Before entry at this point, set the first byte address in AlL,H (&3C-
3D) and the last byte address at A2L,H ($3E-3F). The Monitor will write
ten seconds of continuous tone (header) followed by the contents of
memory as specified, followed by one byte of checksum (the result of

Exclusive OR of all the data bytes written to the tape).

READ

SFEFD 65277 =259

Before entry at this point, place the first byte address into AlL,H
($3C-3D) and the last byte address into A2L,H ($3E-3F). The Monitor
reads the data from the tape, storing it into memory in the specified
locations, and maintaining a running Exclusive OR result in the zero
page field called CHKSUM ($2E). When the last specified memory location
has been filled from the tape, the Monitor reads one more byte and
compares it with the contents of CHKSUM. If equal, the Monitor sounds a
beep and returns to the calling program. If not equal, the Honitor
prints "ERR" through COUT before sounding the beep and returning.

If ¥ou want to have the calling program determine whether the tape was
read successfully or not, then some special actions must be taken. {ne
method is to compare the contents of CH ($24) before the tape read with
the contents after. If they are equal, FRR was not printed to the
screen. If the cursor horizontal position (CH) has changed across the
call to READ, then ERR must have been written to the screen. If this
condition is encountered, the program can then ask the operator to
position the tape and signal the program for another attempt at reading
the record. Caution: If CSWL,H points to a printer card or other
routine which does not output to the secreen, CH will not be inecremented
by the output of "ERR".

CASSETTE INPUT/QUTPUT INTERNAL ROUTINES

The following entry points/routines functions are described , but not
documented in sufficient detail for call by user program. For some of
them, timing is critical and the documentation for using them would
depend on how they were to be used.

82 MONITORS PEELED

- e T M W e e M M e T T N T N - - M M T T

BLELEEEE R - - T .

HEADR

srcce 64713 -823

This routine writes the synchronization monotone which is the first

part of every tape record. When the WRITE rcutine calls HEADR, it loads
a 540 into the A-reg causing a 1@ second header to be written. The READ
routine also calls HEADR to delay from first detection of data coming

in from the tape to the first point at which reading for @/1 detection
begins. READ loads the A-reg with a $16 before calling HEADR so the
delay for hardware settling is set to about 3.5 seconds. This routine
is not called by BASIC or APPLESOFT, but it is used by the Programmer’s
Atd #1 Tape Verify routines which read the tape and compare the data to
memory instead of storing the data into memory.

RD2BIT

SHCFA

64762 =774

This routine causes looping with decrementing of the Y-reg until the
hardware has indicated two transitions of the tape input register. The
routine RDBIT is called twice for this purpose. Contents of the Y- reg
on return compared with contents on entry indicate the length of time
It took for the transitions.

This routine is called from within the Monitor by the READ routine, to

delay entering data transfer mode until tape input is available. READ

calls HEADR for the 3.5 second delay on return from its call to RD2BIT.
Thisg routine is also called from APPLESOFT and from the Tape Verify and
Shape Table Load programs in the Programmer’s Aid #1.

RDBIT
SFCFD 64765 =771

This routine loops with decrementing of the Y~reg while testing the

tape Input register for transition from zero to one or one to zero. Bit
value of zero or one is then determined from the residual count in the
This routine is called from within the Monitor routines RD2BIT
and READ. [t is also called by Programmer’s Aid #1 Tape Verify.

Y=rog.

RDBYTE

SICEC LA THE -788

This routine calls RD2BIT as required in order to assemble a byte of
[ntormat fon from the tape. It then returns to caller with the byte in
In addition to being called from the Monitor READ routine,

aluo called hy Shape Table Load in Programmer’s Aid #1.

the A=reg.
1t Is

MISCELLANY 83

WRBIT

SFCD6 64726 -81¢

This routine accomplishes writing a bit to the tape when called by
either the HEADR routine or the WRBYTE routine,

WRBYTE

SFEED 65261 =275

When called to write a byte to the tape, this routine uses WRBIT to
write ten bits to the tape. The only caller is WRITE in the Monitor.

PADDLES, BUTTONS & ANNUNCIATOR 1/0O

The Apple IT has a Game 1/0 connector with hardware support for four
digital outputs, three digital inputs, and four analeg inputs {called

paddles). The Monitor reads the paddles by writing a strobe to start
the paddle timer and then reading the selected paddle timer and

incrementing the Y-reg until that timer comes true, The result of the
read is in the Y-reg. Monitor support for digital outputs or digit
inputs is not required. Access to the digital I/0 ports is gained by
PEEKing or POKEing the appropriate address, or by LDx or STx if
machine language is used. The Autostart Monitor does initialize the
digital output ports (annunciators) on any RESET key interrupt. AN{}
and ANl are initialized to the clear (TTL LO) condition by reference
to addresses $CP58 and $C@5A. AN2 and AN3 are initialized to the set
{(TTL HI) condition by reference to addresses $CPSD and $CPSF.

To use the Monitor support to read the setting of a paddle, JSR to

PREAD FRIE 64286 -125¢

with paddle number (#-3) in X-reg, and on return the "value" of the
paddle will be found in the Y-rep. The A-reg is destroved in the
process. (APPLESOFT and RASIC support paddle reading, so setting of X
and looking at Y is not required there.)

Direct reading of the paddles may be accomplished by accessing the
paddle trigger to start all paddle timers and then reading the
appropriate paddle input address repeatedly while counting until the

value tead from the paddle address no longer has the $8@ bit set.

CAUTION: After reading a paddle, let some time po by before reading

another paddle or incorrect results may be a problem. When the paddle
trigger is strobed, all the timers start. TIf the first paddle you

read has a low value, on going back quickly to read another paddle

the transition you see may be from the first paddle trigger instead
of the second. See the sample program in the section "Use of

Control-Y with Parameters'. Another solution is to do a read of a
fake paddle between real readings.

84 MONITORS PEELED

. - O I . T B N . B N T B B N . B B B B

~ WA A A A A

GAME I/O HARDWARE ADDRESS TABLE

Game 1/0 Hardware Address Hex +Dec -Dec Action/Commants
Addr Addr Addr

Start Paddle Timers. CR7¢ 49264 -16272

Paddle ¢ timer. C@64 49252 -16284 Negative until

Paddle 1 timer. c#65 49253 -16283 timer

Paddle 2 timer. Ccieb 49254 -16282 expires.

Paddle 3 timer. CP67 49255 -16281

Paddle @ switch. C@6l 49249 -16287 MNegative

Paddle 1 switch. Cc@62 49250 -16286 indicates

Paddle 2 switch. CP63 49251 -16285 button pushed.

Clear Annunciator §# output. cP58 4924¢ -=16296 POKE/STore

Set Annunciator @ output. C59 49241 -16295 zZero

Clear Annunciator 1 output. C@5bA 49242 -16294 to

Set Annunciator 1 output. C@5B 49243 -16293 appropriate

Clear Annunciator 2 output. CP5C 49244 -16292 address.

Set Annunciator 2 output. c@sn 49245 -16291

Clear Annunciator 3 output, C@SE 49246 -1629(%

Set Annunciator 3 output. CHSF 49247 -16289

WAIT ROUTINE

The WAIT routine consists of a loop within a loop, constructed in

such a manner that the length of time spent in the loop varies
geometrically with the entry A-reg. A call to this routine will cause
a loop for a predictable length of time, such as is used by the
Monitor with regards to using the speaker as a bell. It may be
usable, for example, in writing data to a lower speed device like a
printer or a typewriter.

WAIT SFCAB 64680 -856
Anaylsis of the code indicates that the time between the call WAIT
(JS5R) and the end of the RTS of WAIT is approximately

2.5A%%2 + 13,54 + 13 machine cycles of 1.¢23 microseconds.

where A equals the contents of the accumulator.

An alternative formula is

TIME [N MICROSECONDS = (2.5 % (A"2) + 13.5 % A + MC) * MS
where A = contents of accumulator

MC = 13 machine cycles

MS 1.¢23 microseconds

]

The following table indicates delay times in the WAIT routine for a
number of wvalues of the A-reg on entry.

MISCELLANY 85

WAIT ROUTINE DELAY TIMES

A-~reag Time in A-reg Time in A-reg Time in
{Dec.) seconds {Dec.) seconds (Dec.) seconds
1 LB0Rg29667 49 LPP683G571 137 LPA99GBTHSS
2y LPUgE5115 Sy PP7P97574 138 .B5@624178
3 -BGETTIT4E
4 SPEG1IE9461 53 PE7929273 150 459628624
5 LAPB146289 54 LB@8216736 151 LBEB412242
6 FddE188232 55 -B#85(¢9314
7 -(g23529 56 .PESAPTART 162 LB6936963
8 JPBE287463 57 JPEO1A9815 163 M7A214628
9 JPR344T51 58 LPP9417738
59 LP@973¢776 174 LA79847196
17 .Ag@987195 60 JALGG4AR929 175 PBHET53574
18 LABLIF9G518
19 PF1198956 73 LBl465(383 184 L#89141151
74 LPL5@AP146 185 LB9RP98679
25 LF#1956999 75 BL5435@24
26 LBP21¢1242 195 .#99955284
85 LA19665129 196 L 1006969377
31 LBP2899182 86 LP20116272
32 BU3BTALLS 204 . 19263561
96 LB24999027 205 .11@#323389
36 PH3624997 97 JBZ5416435
37 PEAPE25505 218 124566618
195 .$29659839 219 .125698¢56
41 AP4878687 1@6 LB3p213282
42 LBR510477 239 . 149430966
122 B39764%1 244 -15¢639819
45 .PF5813709 123 LBagagaags
46 BEeE6E252 255 L169836414

USE OF CONTROL-Y WITH PARAMETERS

In the APPLESOFT manual there is a caution that if one paddle is read
another should not be read too quickly. Following is a machine

language program with which the interference between the paddles can
be demonstrated.

Initiate this program by entering the Monitor command xxxxY, where
®Xxx is a number representing the amount of delay to use between
reading paddle # and reading paddle 1, and Y represents control~Y.
The Monitor command '"control-Y" causes a JUP to location $@3F8 at
which location we place a JMP to the beginning of the program.

As the Monitor scans the input command line, the value of the hex
digits is placed in page zero locations AIL,H ($53C-3D) for our use.

86 MONITORS PEELED

S T . T T T TN B BN BN B B T . . B T B B B T B B B B

— A A A

=

AAdaasaaaaacdaaa

PADDLE INTERFERENCE—SAMPLE PROGRAM

PIrs

2099
202
2004
2006
2048
2¢0A

20¢c
2¢¢E
261¢
2012
2014
2016
2919

201B
291D
201F
2021

2423
2925
2¢28

2024
202¢
2(42F
2031
2034
2436
2439

283cC
2083%

20449
2042

2044
2046
2048

2044
204C
204F,
2¢5¢
2952
2(55
2057
20059

Jup

LDA
STA
LDA
STA
LDA
STA

LDA
STA
LDA
5TA
LDX
JSR
5TY

DEC
BNE
DEC
BMI

LDX
J5R
5TY

LDA
JSR
LDA
JSR
LDA
JSR
JSR

INC
BNE

INC
BNE

LDA
STA
STA

ING
BNE
INC
BNE
JSR
LDa
STA
BNE

$20dq

s#CH
54

83C
519
$3D
811

514
8§12
811
§13
S
SFBIE
5@

$12
$201B
$13
$2¢H18

5#1
$FBIE
$1

)
SFDDA

SHAD
SFDED
sl
SFDDA
SF94 8

$5
52083C

$4
$2¢9c

$#9
s4
§5

Sh
$S204A
35
s2@4A
SFC58
s#CH
$4
S20dcC

Set counter for 64 samples to run

before clearing screen and starting over.

Pick up low part of entered count from AlL

and store it for repeated use.

Pick up high part of entered count from All
and store it for repeated use.

Pick up low part of count:
store it in counter for this pass,
and also high part.

Set X for paddle { read.
Call paddle read.
Store paddle ¢ result in location .

Count down delay locp low byte:
when zero, count down high byte.

Stay in the loop until high goes minus.

Set X for paddle | read.
Call paddle read.
Store paddle ! result in location 1.

Pick up paddle @ value.
Print it as a hex value.
Pick up a blank to print.
Print the blank.

Pick up paddle 1 value.
Print it as a hex value.
Print three blanks.

Delay for awhile to keep paddle 1 read
from upsetting paddle # results.

Is it time to clear screen and restart?
NE means no, go back and sample again.

Wait a while before clearing screen.

Clear the screen.
Restore the per screen counter,

and go one more hig round.

MISCELLANY

87

REGISTERS FOR BASIC MONITOR CALLS

Many of the entry points specified in this book require presetting of
registers for proper operation. Following is a sample program,
written for APPLESOFT, which uses Monitor calls for conversion from
decimal to hex.

The theory behind the operation is that on a Monitor G command, the
registers are loaded from the SAVE area before going to the location
specified in PCL,H. Thus, by poking destination address into PCL,H

and the required register contents into XREG, YREG, an entry point in
the Monitor GCo command processor can be used to pass the registers to
a selected routine.

DECIMAL TO HEX CONVERSION

APPLESOFT SAMPLE PROGRAM

14 REM CONVERT DECIMAL INPUT TO HEX OUTPUT
1@#§ INPUT "ENTER NUMBER ";A Read the input.

1146 IF A=99999 THEN END

Provide a way to end the program.

154 C% =4 [/ 256 Isolate the high byte.

2@@ POKE 71,C% Set YREG for PRNTYX call.

QY BEL = A/ 256 Get remainder from A/256.

31¢ B = B% * 256 For low byte {XREG) POKE.

320 BZ =A - B

35¢ POKE 7¢,BY

4¢¢ POKE 59,249 Set PCH to SF9.

S@@ POKE 58,64 Set PCL to $4(.

55§ PRINT Print a blank line.

6¢¢ CALL 652¢9 Entry point in GO processor is FEB9.
65@ PRINT Print a blank line.

70¢ GOoTO 1¢¢ Go around for another number.

STEP AND TRACE PECULIARITIES

Adacaaaaanssaaa

A

NN

The Step and Trace functions in the 0ld Monitor incorrectly display

register contents under some circumstances.

and gives special attention to JSR, RTS, JMP, JMP indirect, RTI, and

BRK instructions.
from the SAVE area at $45-49,

In each case, the register contents are displaved
However, there is no SAVE call after

"execution" of these instructions, as there is for normally traced

instructions, so the registers displayed are those present in the
SAVE area before execution of this instruction.

Therefore, on JSR and RTS, the displayed contents of the S-reg are

incorrect.

On the first instruction after a JSR or RTS, the S-reg

displays correctly, unless that also is an RTS or JSR.

88 MONITORS PEELED

— 4

The STEP routine detects

N

-

-

B T R -, D B N . B B B B

The Step and Trace routines are not incorrect in handling of a BRK
instruction. That is, the address displayed for the BRK is correct,
instead of bheing off by two bytes, because the BRK is detected by the
STEP routine instead of being executed by the 65@2.

Although step and trace can be very helpful for some program
debugging tasks, they cannot be used in tracing calls to the Monitor

(generally including "print" output) or for programs which use AIL,H
thru A4L,H.

Because of the lack of "CLD'" at PCADJ (8F953), incorrect addresses
will be displaved if you set decimal mode (SED) within the program
being traced or stepped.

MISCELLANY 89

@9pple computer inc.

10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

950-0018-A

AT ATA TN TN TN SN TN TN TN TN T TN TN TN TN IR TN AT T

